Unconditional Cash Transfers: A Bayesian Meta-Analysis of Randomized Evaluations in Low and Middle Income Countries

Tommaso Crosta, Dean Karlan, Finley Ong,

Julius Rüschenpöhler, and Christopher Udry^{*}

August 19, 2024

Abstract

We use Bayesian meta-analysis methods to estimate the impact of unconditional cash transfers (UCTs) on twelve primary outcomes from 114 studies of 72 UCT programs in middle and low income countries. Cash transfers generate strong and positive average treatment effects on ten of thirteen outcomes: monthly household total and food consumption, monthly income, labor supply, school enrollment, food security, psychological well-being, total assets, financial assets, and children height-for-age. The three remaining outcomes have prediction intervals mostly positive, but that include zero: number of hours worked, children weightfor-age, and stunting. We draw six conclusions: First, consistent with several models of capital market failures, households consume more of streams and invest more of lump sums, however once stream programs end the impacts mirror those of lump sum, indicating some propensity to save a portion of stream transfers. Second, long-run treatment effects remain broadly strong, with some evidence of lump sums modestly dissipating impact while ongoing streams augmenting impact. Third, returns are linear or slightly negative with respect to grant amount, thus we do not find evidence for threshold-based poverty traps within the observed range of transfers and with this study-level analytical method. Fourth, effects on consumption and income are greater for UCTs targeted to women. Fifth, programs employing light-touch framing related to child welfare or food security have weakly stronger impacts. Sixth, positive impacts on labor supply and income suggest no evidence of "dependency" theories that cash transfers demotivate income-generating activity on average.

^{*}Contacts: Crosta (tommaso.crosta@phd.unibocconi.it, Bocconi University); Karlan (dean.karlan@gmail.com, Northwestern University); Ong (finley.ong@kellogg.northwestern.edu); Rüschenpöhler (julius.ruschenpohler@kellogg.northwestern.edu, Northwestern University, Global Poverty Research Lab); Udry (christopher.udry@northwestern.edu, Northwestern University). We thank Svankita Arora, Lily Ge, Samir Khatri, Ling King, Daniel Kremer, Anjali Patel, Osvaldo Soto Franco, and Donny Tou for excellent research assistance. We appreciate useful insights and suggestions from Harold Alderman, Abhijit Banerjee, Samantha Carter, Han Chia Sheng, Daniel Handel, and seminar participants at the IADB, the World Bank, the CEGA-NIERA Africa Evidence Summit, and several conferences.

1 Introduction

Unconditional cash transfers (UCTs) have become a common policy tool and are heavily studied. At least 72 UCT programs have been evaluated using a randomized controlled trial ("RCT"), ranging widely in scale and purpose, from large government programs to small non-governmental efforts, from humanitarian aid to economic development. The breadth of this empirical evidence now permits us to establish a basic understanding of the average expected treatment effects from cash transfers across a variety of important outcomes, potentially serving as a benchmark for development policy. The plethora of studies and design variations facilitate investigations of several commonly posed theoretical and policy questions of critical importance, such as the presence of threshold-based poverty traps, the elasticity of labor supply to income, the differential impact from targeting women within households and from adding framing (i.e. "nudges") to the transfers.

Our meta-analysis includes 114 papers ("studies") reporting results from 72 randomized evaluations ("programs") of UCTs in 34 low and middle income countries over both short and long time horizons (mostly between 12 and 48 months).¹ We examine impacts on 13 primary as well as several secondary outcomes (typically components of a primary outcome). We also explore heterogeneity with respect to the following sources of variation: transfer size (with both a linear specification, the primary specification throughout, and a quadratic specification, to test for increasing or decreasing marginal returns to grant size), frequency of transfer (lump-sum transfers versus ongoing streams versus completed streams), measurement timing (i.e., amplification or dissipation of effects over time), target population (female-targeted versus male-targeted versus non-targeted), and framings that suggest a child or food security focus to households.

We use a Bayesian hierarchical model to jointly estimate average treatment effects of UCT programs. We find strong, positive impacts on ten of thirteen primary outcomes: Monthly household consumption, monthly household food consumption, monthly income, labor force participation (binary), school enrollment (binary), z-scores for food security

¹Appendix Tables A.1a-b describe the key design features of the 72 programs in our sample.

and for psychological well-being, the stock of total assets, the stock of financial assets, and height-for-age z-scores. Results for hours worked, weight-for-age z-scores, and stunting (binary) are positive but not statistically significant at 95% credibility.

We examine six main hypotheses. First, we find support for an oft-hypothesized pattern that people consume more of streams and invest more of lump-sums. Perhaps surprising, however, completed stream programs generate results much closer to lump sum transfers than to ongoing streams, suggesting that households are able, and choose to, save or borrow sufficiently to roughly equilibrate the two types of transfer (once the stream transfers are no longer incoming).

Second, we compare longer-run to shorter-run results. Lump sum and completed streams produce impacts that after two years modestly dissipate for consumption but remain constant for assets; ongoing stream, on the other hand, generates increasing treatment effects over time for consumption, consistent with households consuming some and investing some of the monthly stream transfers. Few papers however report long-run outcomes past 48 months.

Third, we examine whether impacts are linear (versus concave or convex) with respect to transfer size. Asset threshold-based poverty traps are a central idea of development economics and an important motivation for the use of unconditional (and large enough) cash transfers to deliver development aid. Fixed costs or increasing returns may imply an asset threshold below which investments are not worthwhile and, in the presence of binding barriers to saving and borrowing, poverty may beget poverty. In theory, a large enough temporary cash transfer could break such a cycle, but our estimates are fairly close to linear with respect to grant size. Absence of evidence, however, is not evidence of absence. This test does not rule out asset-based poverty traps as thresholds as they may be heterogeneous across sites, households, or beyond the range of transfer sizes tested; in short, this is a weak test of such theories, particularly given the analysis is at the study-level across sites and countries, and not at the household level.

Fourth, we examine how results differ for programs that target women: targeted

transfers lead to higher observed consumption and higher income (versus untargeted programs), but no difference in assets. On child-related outcomes, we find inconsistent results, with results stronger for weight-for-age of children but worse on height-for-age.

Fifth, we find that programs that include some form of a "nudge" (Thaler and Sunstein 2009) with respect to the transfer being intended to benefit children do lead to stronger impacts on total consumption, food consumption, food security, and psychological well-being but no difference for the more obvious outcomes of child anthropometrics and school enrollment.

Sixth, on labor supply, a key outcome of policy interest, unconditional cash transfers generate a strong positive effect on the extensive margin and a noisier but positive point estimate on the intensive margin (i.e., hours worked). Considering the strong positive effects on income, this implies that unconditional cash transfers do not "demotivate" recipients. This result is consistent with previous meta-analysis (Banerjee, Hanna, et al. 2017) and with poverty-trap models of labor supply in which poor households supply less labor because they need resources to find and maintain labor or to make investments for self-employment. The positive impact on labor supply is also consistent with imperfect labor markets and an increased demand for labor in the household due to downstream investments facilitated by the transfers received.²

Table 1 situates our study in the context of the extant meta-analytical literature on the impacts of cash transfer programs on particular outcome classes. We add to this meta-analysis literature along five dimensions.

First, we explicitly account for transfer size in estimating treatment effects instead of coding transfer receipt as a binary. This is consistent with Kondylis and Loeser (2021), the closest meta-analysis to ours in method and questions. Aggregating treatment effects from "any cash transfer" as a binary rather than per dollar of the transfer renders the aggregate point estimate uninterpretable on its own. One would always need to multiply

²Increased spending on temptation goods is another oft-hypothesized deleterious effect of cash transfers. We do not analyze these anew, as a recent meta-analysis reports of 42 studies finds mostly nulls or even negative point estimates, indicating that similar to labor supply the fears of increased spending on temptation goods are unsupported by the evidence (Evans and Popova 2017).

the binary point estimate for "any cash transfer" by average grant amount across studies to be interpretable (after also assuming that marginal treatment effects are constant with respect to grant size).

Second, we analyze a wide range of social and economic outcomes, while most existing meta-analyses focus on a particular outcome class (e.g., education, mental health, child health etc). These other studies are accompanied by more nuanced and theoretically deep discussions of the link between cash transfers and a particular set of outcomes, while ours is a more comparative perspective. On this dimension, the closest study to ours is Kabeer and Waddington (2015) which spans consumption, investment, and labor.

Third, we investigate the temporal evolution of impacts using a binary model that compares short-term and long-term impacts as well as a polynomial model that adds a covariate for months since the intervention and its squared term. This analysis complements three other analyses, Wollburg et al. (2023), McGuire et al. (2022), and Kondylis and Loeser (2021), that quantify effect dissipation in different ways. Closest to this paper's binary dynamic effects model, Wollburg et al. (2023) compares short-run to more long-run estimates of mostly UCT RCTs on mental health outcomes to show that small but statistically significant short-run effects on depression dissipate substantially in the longer run. McGuire et al. (2022), using a more diverse sample including both RCTs and non-randomized designs as well as CCTs and UCTs, finds little dissipation of the small effects they estimate on depression. Employing a model that uses a continuous time variable similar to our dynamic effects polynomial model, Kondylis and Loeser (2021) studies treatment effect persistence specifically with respect to transfer size and finds that the impact of larger transfers dissipates at higher rates. Our study does not detect evidence of dissipation of effects on household consumption and instead finds some evidence that effects compound over time for ongoing transfer streams.

Fourth and fifth, we examine heterogeneity in impacts with respect to targeting females (versus males, and versus untargeted) and with respect to child-focused framed (or "nudge") cash transfers, i.e., that are accompanied with either labels or some communication aspect promoting the cash transfers as intended for children's wellbeing.

2 Data

2.1 Study inclusion

Our meta-analysis focuses on RCTs of UCT programs in low and middle income countries. Following the approach by Croke et al. (2016) and Kondylis and Loeser (2021), we identify studies using two approaches. First, we gather studies from secondary sources: the GiveDirectly Cash Evidence Explorer, the Overseas Development Institute's 2016 report "Cash transfers: what does the evidence say?" (*Cash Evidence Explorer* 2023; Bastagli et al. 2016), and existing meta-analyses on cash transfers with publicly available data. Second, we conduct a search of databases and registers of scholarly research using key words.³ As displayed in Figure 1, our combined search yields a universe of 6,949 studies, of which 114 meet the inclusion criteria of our meta-analysis.

We employ the following inclusion criteria:

- 1. The study is an RCT in which the control group received no or minimal cash.
- 2. At least one of the study's treatment arms is an UCT.
 - (a) This may include UCT programs with some minimal behavioral change components to the treatment, such as an onsite information session or labelled cash transfers. It excludes conditional cash transfers (CCTs), which require ongoing behavioral compliance with certain conditions to continue receiving the cash transfer (most commonly school attendance).⁴
 - (b) This includes non-contributory pension programs.

³See Appendix for a complete description of our systematic search and Appendix Table A.2 for a hyper-linked list of the 114 included papers from the 72 studies.

⁴Two programs in our sample, Bono de Desarrollo Humano (BDH) in Ecuador and Programa de Apoyo Alimentario (PAL) in Mexico, were nominally conditional cash transfers. In practice, PAL's conditions were not enforced, and participants mostly did not adhere to them (Avitabile et al. 2019). The BDH's conditions were never implemented due to administrative constraints (Hidrobo and Fernald 2013).

- (c) This excludes RCTs with cash transfers that are delivered in conjunction with other costly and non-trivial interventions, such as training, savings group formation, coaching, etc.
- 3. The study's experiment takes place in a low or middle income country (as defined by World Bank classification).
- 4. The study reports results on any outcomes related to consumption, food security, income, savings and investment, business performance, labor supply, child health and development, education, psychological well-being, or female empowerment.

2.2 Data extraction

We collect the following information each included study:

Transfer frequency: Lump sum and stream transfers: As an important example of program design, we distinguish between stream and lump sum transfer programs. In general terms, a lump sum transfer delivers a one-off payment, while a stream transfer delivers repeated cash payments at regular intervals over an extended period of time. We define an intervention as a lump sum program if the cash is delivered in no more than three installments over no more than two months (28 out of 34 included lump sum transfers with exactly one transfer). All other transfer schedules, ranging from five weekly transfers to six quarterly transfers, are considered stream transfer programs.

Gender targeting: We construct a categorical variable that identifies whether programs target UCTs to men, women, or neither. For programs that give cash to households, we only consider a program to target females (males) if it ensures the cash transfer is delivered to a woman (man) in the household.⁵ We do not define a program as targeting females (males) if it allows households to choose who receives the transfer, even if recipients are largely women (men). For programs that give cash to individuals, we say a program

⁵There are no programs in the sample that target males in this manner.

targets females (males) if greater than 80% of the individuals in the sample are women (men). Of the 72 programs in our sample, 32 target women, 6 target men, 28 have no targeting, and 6 randomize targeting to men or women.

Child and food security framing: By definition, UCT programs neither place conditions on how recipients spend the transfer nor require certain behavior as a condition for receiving the transfer. Nonetheless, certain programs in our sample use framing devices to encourage the cash transfer to be directed towards particular ends. These devices vary from a simple labeling of the UCT (e.g., "Child Grant Program," "Hunger Safety Net Program," etc.) to free (voluntary) information sessions on related topics such as education or child nutrition. We construct a binary indicator variable that identifies programs using framing related to food security or child development, including maternal health, child nutrition, and education.⁶

Total transfer amount and monthly tranche amount: We employ two measures for the size of the transfer, the total amount transferred and the monthly tranche amount. The definition of the total transfer amount is straightforward: the sum of the value of all transfers made to program beneficiaries by the time of the endline survey, as in Kondylis and Loeser (2021) (if individuals varied, we report the average each recipient received in total).

The second measure, the monthly tranche amount, is equal to the total transfer amount divided by the number of months since the first transfer. For ongoing stream transfers, this measure is equivalent to the monthly transfer amount (if ongoing stream transfers are not monthly, we convert the amount to the average monthly transfer amount). For completed stream transfers and lump sum transfers, we take the sum of all transfers made and divide by the number of months since the first transfer; this thus facilitates comparing to ongoing stream by using a monthly tranche amount that corresponds to what would

⁶See Appendix Table A.3 for a complete description of targeting and framing across all programs in the sample, including framing related to goals other than improving child welfare or food security.

have been transferred had the same total been spread over the full time period from first transfer to measurement (i.e., just like the ongoing stream programs). All transfer amounts are then converted to 2010 USD PPP.

We do not include estimates for stock outcomes (e.g., assets, anthropometrics) when using the monthly tranche amount, because this would be confounding the tenure of the program with the monthly transfer amount, rendering results difficult to interpret. Similarly, for lump sum transfers, while we do estimate the impact using the monthly tranche amounts in order to compare to stream transfers, we consider the total transfer amount to generate the more interpretable estimate.

Treatment effects: We extract treatment effects directly from the papers' results tables rather than using the studies' underlying data. This approach means that we cannot ensure that our estimates come from identical regression specifications. It has the advantage, however, of being faster to produce and allows inclusion of both older publications from before norms of data publication were more widespread and newer papers (e.g., working papers) for which data are not yet available.

While we cannot guarantee regressions specifications are perfectly consistent across studies, we prefer estimates from regressions that disaggregate by survey round and treatment arm and that contain fewer control variables.⁷ Outcomes are converted to 2010 USD PPP. Flow variables, such as consumption and income, are converted to common periods of time (i.e. per month or per week). Psychological well-being and food security outcomes are standardized, if necessary, by dividing by the control group standard deviation.⁸ Once converted to appropriate units, we divide all treatment effects by the total transfer amount or monthly tranche amount to construct the outcome variables standardized relative to the transfer amount, thus allowing results to be interpreted as the treatment effect per

⁷See Appendix for a complete description of our preferred specifications.

⁸See Appendix for a complete description of how each outcome variable is converted to common units. Appendix Tables B.1 and B.2 also present the treatment effects on food security and psychological well-being outcomes before and after standardization.

dollar transferred. We typically scale treatment effects by \$100 or the median transfer amount of the programs in our sample.

Months since program onset: Short-term and long-term effects: We extract the average number of months between the first transfer (not the baseline survey) and the endline survey. Figure 2 visualizes the temporal distribution of our data for each of the outcomes⁹. If a study does not report time since first transfer, we infer timing from the program's scheduled timeline. We consider a treatment effect measured at an endline up to 18 months after program onset to be a short-term effect. All treatment effects measured more than 18 months after program onset are consider long-term effects. Note a program may administer one follow-up survey one year after program onset and another follow-up two years after program onset. Results from the first follow-up are considered short-term and the second are long-term.

Months since program completion: Ongoing and completed programs: We also extract the average number of months since last transfer, as for months since first transfer. We consider a UCT program ongoing if the number of months since last transfer is equal to zero or if transfers are still being administered to participants at the time of survey. If the number of months since last transfer is greater than zero and the final transfer of the program has been delivered, we consider a program completed. Note, all lump sum programs are completed programs. Several of the UCT programs in our sample are large government-run social protection programs that administer stream transfers indefinitely. While participants may flow in and out of the program over time due to changing eligibility status, we generally do not have information on the proportion of RCT participants still receiving transfers at endline. We thus consider these programs ongoing. Combining completion status (ongoing vs. completed) with transfer frequency (stream vs. lump sum), our subsequent analysis considers three disbursement schedules: ongoing stream programs, completed stream programs, and lump sum transfer programs.

 $^{^{9}\}mathrm{Appendix}$ Table C presents the distribution of months since first and last transfer, broken down by disbursement schedule type

3 Methodology

A crucial methodological challenge in any meta-analysis based on RCTs is how to best aggregate information from multiple studies to estimate a measure of the general effect of the treatment with credible external validity. An individual RCT can provide a consistent estimate of the average treatment effect of cash transfers on a given outcome in a particular population during a specific time period and context. But how much of the estimate is due to idiosyncratic elements of the context (e.g., political instabilities, natural catastrophes, implementation fidelity, etc.) and how much due to statistical regularities with generalizable external validity (e.g., consumption increases from cash transfers are stronger in lower income samples)? In the following, we lay out key characteristics of our model and estimation method, as well as regarding the assumptions we make with respect to the generative process of the data and our statistical framework.

3.1 Hierarchical Linear Models for Meta-Analysis

Assume a researcher has gathered N estimates TE of average treatment effects (ATEs) from comparable RCTs with corresponding standard errors SE and a set of RCT-level covariates X (e.g. whether the transfer schedule is a stream or a lump sum). The researcher is not only interested in understanding the common evidence of a statistically significant effect across RCTs, but also in identifying if certain features of the interventions correlate with higher or lower effects. Assume that the data generating model follows a linear hierarchical structure of the following nature:

$$\hat{TE} \mid \theta \sim \mathcal{MN} \left(\theta, \begin{bmatrix} \hat{s}e_1^2 & \cdots & 0\\ \vdots & \ddots & \vdots\\ 0 & \cdots & \hat{s}e_N^2 \end{bmatrix} \right)$$
$$\theta \mid \beta, \sigma_\theta \sim \mathcal{MN} \left(X\beta, \ \sigma_\theta^2 I_N \right)$$
$$\{1, ..., K\} \quad \beta_k \sim \mathcal{N}(0, 25)$$

 $\forall k \in$

$$\sigma_{\theta} \sim \mathcal{H}alf - \mathcal{N}ormal(0, 25).$$

The interpretation of the model is that treatment effect estimates are drawn from distinct and conditionally independent distributions centered around a parameter θ with variances corresponding to their empirical estimates \hat{SE}^2 , which are supposed to be consistent estimators of the former. Crucially, these parameters come from a common distribution with a common mean and standard deviation, i.e. $\mathcal{N}(X\beta, \sigma_{\theta}^2 I_N)$. The model is a generalization of the classical Rubin (1981) model, a simple random effects model, in line with a growing literature that uses more complex formulations to uncover dynamic effects of treatment or subgroup heterogeneity (e.g. Kondylis and Loeser (2021), Alley (2022), Bandiera et al. (2021)). Here, θ is not centered around a common mean but instead around an expectation depending on an RCT-specific set of covariates with constant additive and linear effects. This allows us to aggregate information across studies, while also estimating parameters that characterize the underlying heterogeneity across RCTs. We outline the different specifications we use for the distribution of $\theta \mid \beta, \sigma_{\theta}$ in subsection 3.3.

We choose a random effects model specifically to avoid the much stronger assumption of no true heterogeneity inherent in fixed effects models. Fixed effects models assume that each estimate is an independent draw from a common distribution such that variation in estimates results exclusively by sampling variation (Rubin 1981). Study-level effects are modeled as measurements of a common effect plus some sampling error, either using the underlying data or an estimator of the treatment effect of choice (Borenstein et al. 2010). Examples of fixed effects models include taking the average of the estimates weighted by the inverse of their estimated variance (e.g. Kondylis and Loeser (2021)) or running a pooled regression using all the underlying RCT-level data and controlling for study fixed effects (e.g. Banerjee, Duflo, et al. (2015)).

On the other hand, random effects models in the tradition of Rubin (1981) allow for non-sampling based heterogeneity in treatment effects across RCTs by introducing a hierarchical structure. Single estimates are assumed to be sampled realizations from distinct distributions (i.e. the first hierarchical layer) whose central parameters come from a common distribution (i.e. the second hierarchical layer). This permits us to both control for the sampling variability of the estimates and identify their idiosyncratic heterogeneity. In line with previous work (e.g. Raudenbush and Bryk (1985), Vivalt (2020)), we assume a hierearchical additive model, allowing the heterogeneity across RCT-estimates to vary across a set of study-level covariates and thus making less stringent assumptions, while potentially uncovering what features of the interventions correlate with higher average treatment effects (Meager (2019) and Meager (2022)).

3.2 Bayesian Estimation

The next challenge is estimating our data generating model, by choosing a suitable statistical approach. The Bayesian approach naturally fits such a data structure and can be flexibly implemented by relying on the assumption of exchangeability (a strictly weaker assumption than independence). Under this assumption, the data are independent conditional on a set of parameters (De Finetti 1972). In our model we assume conditional exchangeability, as we characterize the second layer distribution to depend on a set of covariates (X) and parameters (β) . This assumption means that, conditional on the RCT features that we consider, observations can be permuted across contexts, without affecting their joint probability distribution.

As previously outlined, Bayesian additive hierarchical models have been widely adopted in the meta-analytical literature in Economics (Burke et al. 2015, Meager 2019, Vivalt 2020, Bandiera et al. 2021, Alexander et al. 2021, Meager 2022, Noam Angrist 2023) and in other disciplines (e.g., Chu et al. 2009, Heeg et al. 2023, Liu et al. 2017). As Raudenbush and Bryk (1985) notice, this approach is formally of an Empirical Bayes nature since we use the data (i.e. \hat{se}) to inform the likelihood distribution. This combines advantages from both the Frequentist and the Bayesian frameworks. On one hand, Frequentist asymptotic distributional results guarantee that each estimate of an average treatment effect is asymptotically Gaussian. This renders the choice of the likelihood less restrictive (A. B. Gelman et al. 1995, Noam Angrist 2023) since it hinges on the same assumptions that render legitimate the Frequentist inference of the original papers.

Frequentist estimation techniques such as maximum likelihood (MLE), on the other hand, condition on the modal point estimate of the higher layers' parameters and thus do not take into account their posterior uncertainty, on the other hand Bayesian techniques sample the parameters from their own estimated posterior distribution, thus taking into consideration a wider range of possible values. (A. B. Gelman et al. 1995, Chapter 5). Moreover, priors can help improve the stability of estimates by providing what is known in the Frequentist framework as regularization (A. Gelman et al. 2017, Hastie et al. 2001). Regularization, a Frequentist technique, can help reduce the variance of estimates and focus the estimation on regions of the parameter space that are relevant (e.g. away from treatment effects of exaggerated magnitude), at the cost of introducing some bias. This can render estimates more precise than with MLE or inappropriately flat priors (A. Gelman et al. 2017). Indeed, Stegmueller (2013) finds that, in simulation studies of additive hierarchical models, MLE tends to have both more severe finite sample bias and/or lower confidence interval coverage, the latter being exacerbated when the number of hierarchical groups (that is, in the meta-analytical context, the sample size itself) is smaller.

The numerical estimation of the model is conducted using Stan (Stan 2022), a software for Bayesian simulations, that uses a Hamiltonian Monte Carlo procedure (Betancourt 2020) to explore posterior density distributions using gradients. This approach allows for flexible definitions of priors and to estimate even relatively complex models.

3.3 Model Specifications

Throughout our analysis, we estimate increasingly richer and more general versions of $\theta \sim \mathcal{N}(X\beta, \sigma_{\theta}^2 I_N)$ by expanding the set of covariates in X.

We start from the original Rubin (1981) random effects model:

(1)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_1 \mathbf{1}, \ \sigma_{\theta}^2 I_N \right)$$

Building on Equation (1), our second model allows for heterogeneity with respect to the type of the transfer and the time of measurement of the effect. The type is defined by the disbursement schedule of the RCT, i.e. whether the transfer was delivered as a lump sum (L) or a stream (S); the timing of measurement, which is relevant only for stream transfers, is whether the programs were completed (CS for "completed stream") or ongoing (OS for "ongoing stream") at the time of measurement:

(2)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_1 L + \beta_2 CS + \beta_3 OS, \ \sigma_{\theta}^2 I_N \right)$$

In the subsequent version of our model, we build further on Equation (2) adding covariates

for the number of months since first or last cash transfer (M) and the squared value of this term to estimate the temporal dynamics of treatment effects. We allow for heterogeneity in dynamic effects between ongoing streams and completed programs (i.e., both completed streams and lump sum transfers). Note that the interpretation of the two trends differs: for completed interventions (C), we estimate a dissipation effect after payments end $(M \odot$ $C+M^2 \odot C)$. For ongoing streams, we estimate a multiplicative effect $(M \odot OS+M^2 \odot OS)$, such as when an individual saves or invests part of the tranche and so can collect interest, additional revenues, and can make further investments in assets:

(3)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N}(\beta_{1}L + \beta_{2}CS + \beta_{3}OS + \beta_{4}M \odot C + \beta_{5}M^{2} \odot C + \beta_{6}M \odot OS + \beta_{7}M^{2} \odot OS, \sigma_{\theta}^{2}I_{N})$$

One drawback of Equation (3) is that it takes a considerable amount of observations to estimate a dynamic trend with precision and, even though our sample for total consumption is sizable for the standards of meta analyses, it might still lead to imprecise measurements. Therefore, as a further complementary estimation we specify a model where we discretize the dynamic dimension of our observations into two categories: short run measurements from up to 18 months from the first transfer and long run measurements after 18 months. The resulting specification of the model is the following, denoting short run by ST and long run by LT:

(4)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N}(\beta_{1}ST \odot L + \beta_{2}LT \odot L + \beta_{3}ST \odot C + \beta_{4}LT \odot C + \beta_{5}ST \odot OS + \beta_{6}LT \odot OS, \ \sigma_{\theta}^{2}I_{N})$$

The disadvantage of this model is that it loses some information in discretizing the dynamic dimension of our dataset, however it is able to detect average differences between short term and long term measurements of average treatment effects more robustly, since it does not rely on a specification of such underlying decaying or accumulation effects, which might have small sample noisy estimates.

We also want to test for decreasing marginal returns for transfer amount, taking into consideration the disbursement type. For ended interventions, we are interested in estimating the marginal effect of a higher total amount transferred, hence, starting from Equation (2), we augment the model with the total amount transferred in PPP interacted with an indicator for the program being either a lump sum transfer or and ended stream $(TT \odot C)$. On the other hand, for ongoing stream transfers, we are interested in estimating the effect of a marginal increase in the monthly tranche and so we run a different model by adding monthly tranche interacted with an indicator for ongoing stream transfer $(MT \odot OS)$ s. The two specifications are the following:

(5)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_1 L + \beta_2 CS + \beta_3 OS + TT \odot C, \ \sigma_{\theta}^2 I_N \right)$$

(6)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_1 L + \beta_2 CS + \beta_3 OS + MT \odot OS, \ \sigma_{\theta}^2 I_N \right)$$

The last dimension of heterogeneity we choose to investigate is whether targeting the transfers by gender or labelling it as for children or food lead to differential effects. In order to do this, we go back to a simpler model: let T denote whether the transfer was targeted to women and F if it was framed for children, then the previous model becomes:

(7)
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_{1}T + \beta_{2}(1-T), \ \sigma_{\theta}^{2}I_{N} \right)$$
$$\theta \mid \beta, \sigma_{\theta} \sim \mathcal{N} \left(\beta_{1}F + \beta_{2}(1-F), \ \sigma_{\theta}^{2}I_{N} \right)$$

4 Results

Table 3 presents average treatment effects in the full sample, estimated using Equation (1). Panel A displays the predicted treatment effect of a \$100 total transfer amount, our preferred outcome variable for estimating impact of lump sum transfers, while Panel B displays the predicted treatment effect of a \$100 monthly tranche amount, our preferred outcome variable for stream transfers.

Tables 4 examines heterogeneity by disbursement schedule, i.e., by ongoing streams, completed streams, and lump sums, estimated using Equation (2). In Table 5, we show dynamic treatment effects on monthly household consumption estimated using Equations (3) and (4). In Table 6a, we estimate the curvature of effects with respect to transfer size, i.e. whether there are decreasing, increasing, or constant marginal returns to cash using Equations (5) and (6). Tables 7 and 8 analyze the impact of targeting by gender and framing by food security and child development goals, based on Equation (7). Finally, Table 9 presents benefit-cost ratios under different assumptions (regarding duration of stream transfers and program costs) and specifications (estimating dynamic effects as binary estimates for under or over 18 months versus a quadratic specification).

4.1 Do Cash Transfers Shift Labor Supply and Income?

UCTs generate positive impacts on income, with credibility intervals considerably removed from zero, thus clearly rejecting "dependency" theories that predict negative impacts on income. Specifically, Column 1 of Table 3 shows positive impact on monthly income for both total transfer (\$1.4/month per \$100, 95% CI: 1.0, 1.9) and the monthly tranche amount (\$22.6/month per \$100, 95% CI: 15.4, 30.6).¹⁰ ¹¹ Results are qualitatively similar in Table 4, in which we disaggregate estimates by disbursement schedule into ongoing streams, completed streams, and lump sum transfers.

Results on income are further supported by positive effects on labor force participation (LFP). Table 3 shows that UCTs increase LFP by 4.8 percentage points (95% CI: 2.4, 7.3) predicted at the median total transfer amount, and by 5.7 percentage points (95% CI: 2.2, 9.4) predicted at the median monthly tranche amount.¹² Table 4 further breaks down the analysis by disbursement schedule and shows consistently positive point estimates. With fewer studies per estimate, however, several of the credibility intervals include zero.

We also see positive, but less robust, results on total hours worked. The point estimates are positive for both methods (total transfer and monthly tranche) but the 95% credibility interval includes zero for total transfer but is strictly above zero for monthly tranche. Specifically, Table 3 reports an increase of 0.5 hours per week (95% CI: -0.4 to 1.3) for the median total transfer amount and 0.2 hours per week (95% CI: 0.001 to 0.44) for the median monthly tranche amount. Table 4, which further disaggregates by disbursement schedule, finds even wider intervals. However estimates are from as few as two studies, and at most seven, so we draw little to no inference from the analysis on differential impact by disbursement schedule on hours worked.

¹⁰To construct the sample of treatment effects on monthly income, we use measures of total individual or household income when reported or the largest sub-category of income (e.g., wage earnings, household enterprise profits, etc.) available when total income is not reported.

¹¹Appendix Table D.1 reports treatment effects on alternative measures of income, including a sample that just uses estimates on total individual or household income; predicted treatment effect sizes based on this sample are slightly larger than the effects we report in Table 3. Also, note that papers vary in their reporting of treatment effects on income at the individual or household level. We do not adjust for this inconsistency, which reflects a limitation of relying on estimates extracted directly from papers rather than using the studies' underlying data.

¹²These large effects are in part driven by two positive outliers (in a sample of only 17 estimates) from the Child Development Grant Programme in Nigeria which finds a \$20 monthly stream transfer (about half the sample median of \$36) to increase paid work among wives in treatment households by 6.0 percentage points after 24 months and 10.7 percentage points after 48 months. The same program raised female labor force participation by 30 and 53 percentage points per \$100 monthly tranche at months 24 and 48, respectively.

Taken together, cash transfers consistently generate positive impacts on our thirteen main outcomes, and at worst, we can rule out meaningfully negative impacts. These results are consistent with the analysis in Banerjee, Hanna, et al. (2017), which examines seven studies (six conditional cash transfers and one UCT) and documents predominantly positive and at worst null results.

4.2 Investment and Consumption Patterns

Next we examine the impact of UCTs on investment and consumption, and patterns observed across disbursement schedule and over time. We find support for the ofthypothesized result that stream transfers generate more change in consumption relative to lump sums, and vice versa for investments or durable goods.

Transfer recipients trade off spending on consumption goods (durable or non-durable) and investing in productive assets. We find positive effects across the board on both consumption and investment. Table 3 reports a \$15.6 (95% CI: 11.3, 20.0) increase in monthly total household consumption for the median total transfer amount and a \$18.9 (95% CI: 13.4, 24.7) increase for the median monthly tranche amount. The majority of the consumption increase comes from food: \$13.1 (95% CI: 9.4, 17.2) increase in monthly household food consumption for the median total transfer amount and \$19.4 (95% CI: 14.5, 24.6) for the median monthly tranche amount. The stock of total assets increases by 19.6% (95% CI: 12.2, 27.3) for each \$100 of the total transfer amount.

Transfer frequency and timing of the endline measurement relative to program completion drive heterogeneity in consumption and investment behavior. Specifically, completed stream programs produce results similar to lump sum transfers but different from ongoing stream programs. Table 4 Panel A reports similar point estimates regarding the treatment effect per total transfer amount for household consumption across all three disbursement schedules, with ongoing streams having a marginally higher effect than the other two. However, when analyzed per monthly tranche amount (Panel B), the treatment effects on consumption are notably stronger for ongoing streams. This is likely the consequence of recipients treating ongoing transfers similar to income, resulting in a higher marginal propensity to consume. Completed streams and lump sum transfers do not generate the same expectation of future cash and so their impact is driven entirely by savings and potential increases in income from prior additional investments. Specifically, ongoing streams of a \$100 monthly tranche boost consumption by \$67.0 (95% CI: 47.7, 87.4) compared to \$48.9 (95% CI: 14.4, 84.5) for completed stream programs and \$39.1 (95% CI: 20.8, 57.8) for lump sum transfers. Treatment effects per \$100 monthly tranche on monthly household food consumption are as large as \$73.2 (95% CI: 58.0, 89.7) for ongoing stream programs but only \$22.6 (95% CI: 6.2, 40.6) for lump sum transfers and not statistically significant for completed stream programs.¹³

Examining food security, differences between disbursement schedules look less stark.¹⁴ Table 4, Panel B shows that a \$100 monthly tranche yields a 0.8 standard deviation improvement (95% CI: 0.5, 1.2) in food security for ongoing streams, compared to 1.0 for completed streams (95% CI: 0.6, 1.3) and 0.4 for lump sum transfers (95% CI: 0.1, 0.6). We conjecture this inconsistency between impacts on food consumption and food security arises since very small increases in food consumption can have substantial impacts on measures of food security (e.g., of skipping meals, experiencing hunger, etc.) for households near the threshold.

The stock of assets shows similar differences across disbursement schedules to consumption, with completed streams yielding results more similar to lump sum transfers than to ongoing streams. Specifically, for each \$100 total transfer, completed streams and lump sum transfers generate increases in total assets of \$33.4 (95% CI: 16.4, 50.5) and \$21.7 (95% CI: 11.8, 32.2), respectively, while ongoing streams yield no statistically

¹³Note, however, that data limitations are severe for completed stream programs: Only three such programs report food consumption.

¹⁴Since we use z-scores, we show in Appendix Table B.1 a complete list of treatment effects on food security measures before and after standardization.

significant increase ($\beta = 1.5$; 95% CI: -16.9, 19.9). In contrast, the increase in the stock of financial assets is not statistically significant for completed streams, whereas ongoing streams increase financial assets by \$2.4 (95% CI: 0.9, 3.9) for each \$100 of the total transfer amount, and for lump sum transfers increases by \$1.6 (95% CI: 0.8, 2.5). Estimates based on the amount of the monthly tranche yield qualitatively similar results across disbursement schedules.¹⁵

Beyond sizable effects on direct economic measures, such as consumption, income, and assets, UCTs also meaningfully improve psychological well-being. Table 3, Column 2 reports a 0.20 standard deviation increase at the median total transfer amount (95% CI: 0.12, 0.28).¹⁶ The positive average treatment effect on psychological well-being is primarily driven by ongoing stream UCT programs (Table 4), i.e., even though economic impacts persist, the psychological well-being impacts dissipate more rapidly. Ongoing stream UCTs improve subjective measures of well-being by 1.0 standard deviations per \$ 100 monthly tranche (95% CI: 0.7, 1.4). These large estimates are partially driven by three positive outliers from the Zambia Child Grant Program (CGP). ¹⁷ In contrast, lump sum transfers and completed stream programs produce effects close to zero that are not statistically significant. This is generally in line with the literature on cash transfers and mental health that finds more modest ameliorating effects on subjective well-being in combined samples of CCTs and UCTs (McGuire et al. 2022) and depression (McGuire et al. 2022; Wollburg et al. 2023).

¹⁵Appendix Table D.2 reports treatment effects on various types of assets: durable assets, productive assets, and financial assets. However, we do not have sufficient data to conduct meaningful comparisons of impact by disbursement schedule on these disaggregated outcomes.

¹⁶See Appendix Table B.2 for a complete list of treatment effects in our sample on outcomes related to psychological well-being before and after standardization.

¹⁷When we exclude three outliers that originate from the Zambia Child Grant Program (CGP), the treatment effect per \$100 monthly tranche is still strongly positive, but reduced from 0.5 standard deviations (95% CI: 0.3, 0.7) to 0.4 (95% CI: 0.3, 0.5) in the full sample or from 1.0 (95% CI: 0.7, 1.4) to 0.6 (95% CI: 0.4, 0.9) in the ongoing streams sample, as reported in Table D.3. The estimates from the Zambia CGP are not only positive outliers, they are also constructed from a binary indicator variable for whether the respondent was feeling happy or happier than 12 months prior. We do not extract an equivalent outcome variable to construct our standardized outcome for any other program. Appendix Table B.2 reports all treatment effects on psychological well-being before and after standardization.

4.3 Dynamic Effects

Next we examine temporal dynamics. Considering the timing of impact assessment relative to program onset and completion offers further insight into patterns of consumption and investment behavior by program type. In Table 5, we explore the dynamic impacts on total monthly household consumption over time. We choose to focus on this outcome for substantive and practical reasons. Total household consumption is an aggregate measure of economic well-being. With 82 estimates, we have more observations than nearly any other outcome and thus more ability to estimate dynamic effects by disbursement schedule. Also, our sample of reported treatment effects on household consumption is relatively balanced between ongoing stream, completed stream, and lump sum programs. In addition to consumption, we examine dynamic effects on the stock of total assets, in order to shed light on savings and investment behavior not fully captured by consumption. With a smaller sample, however, we are less able to draw robust conclusions.

Our analysis reveals little evidence that treatment effects dissipate over time. In fact, the benefits of ongoing stream UCTs appear to grow. This suggests that while transfers continue some funds get consumed and others invested, leading to increasing income over time that feeds back into consumption. We do, however, note suggestive evidence of smaller consumption effects for lump sum transfers in the long run. Figure 3.1 plots the posterior average treatment effects on total consumption sorted by months since first transfer to visualize the relationship between effect size and measurement timing.

As seen in Table 5, Panel B1, we find evidence that the effects of ongoing stream transfers on household consumption are greater in the long run (18 months after transfer onset). The long-term treatment effect per \$100 monthly tranche is \$98.5 (95% CI: 74.9, 122.6) while the short-term treatment effect per \$100 monthly tranche is \$34.1 (95% CI: 12.3, 57.3).¹⁸ For completed stream programs and lump sum transfers, we do not observe

¹⁸Note this finding is not robust to our alternative outcome variable definition, as seen in Panel A1 of Table 5. While we still estimate a larger long-term treatment effect, the credibility intervals of our

statistically significant differences between short-term and long-term effects.

Panels A2 and B2 of Table 5 present results from a polynomial model which interacts a continuous months variable and its squared term with ongoing and completed program indicators.¹⁹ Consistent with our findings in Panels A1 and B1, we observe greater consumption effects over time for ongoing stream programs but virtually no dynamic effects for completed stream programs and lump sum transfers. The predicted treatment effect of a \$100 UCT stream at month 12 is \$39.8 (95% CI: 19.2, 61.6) and at month 24 is \$89.7 (95% CI: 65.5, 114.8). The coefficients on the months and months squared covariates, however, are not statistically significant.

4.4 Curvature with respect to transfer amount

Whether UCTs exhibit increasing marginal returns is not only a key question for economic theory but also a critical policy question. If there are increasing marginal returns beyond a certain threshold, then this may justify giving larger sums of cash to a small number of recipients to push them out of a poverty trap. Whereas if there are diminishing returns, then policymakers should give smaller transfers to many more recipients. The line of thinking, however, ignores other moral considerations, such as equity, and practical concerns, such as the interaction between transfer size and administrative costs

Figure 3.2 plots the posterior average treatment effects on total consumption sorted by monthly tranche amount to visualize the relationship between the treatment effect per dollar and transfer size. The forest plot indicates no clear pattern of increasing or decreasing marginal returns. In Table 6a, we test explicitly for increasing or decreasing marginal returns to UCTs by incorporating covariates for transfer size interacted with

estimates largely overlap.

¹⁹Due to the limited number of estimates for completed stream programs and the fact that the dynamic effects of completed stream programs appear more similar to lump sum transfers than to ongoing stream programs as shown in Panel A1, we pool completed stream programs and lump sum transfers to estimate the coefficients on the months and months squared terms.

disbursement type into our model. Since our outcome variable is the treatment effect per dollar transferred, the interpretation of the coefficient on these covariates is equivalent to the second derivative of the treatment effect (i.e. curvature) with respect to transfer amount. For all disbursement types, we find negative but not statistically significant curvature effects on monthly household consumption for any disbursement type.

Thus we do not find evidence for "threshold" poverty trap models, at least for thresholds within the range of transfer amounts where our evidence is robust. But absence of evidence is not evidence of absence, particularly in this case, as this is a fairly weak test for the poverty trap theory given this is examining patterns at the study-level across markets and countries, rather than a household-level micro examination that attempts to incorporate household level heterogeneity which inevitably affects any such threshold.

We find mixed evidence of curvature when examining total assets. Columns 4-6 report these results. Note that only lump sum has a large sample of studies (38 estimates from 22 studies) and finds a slightly positive (but neither large economically nor significant statistically) estimate for the squared-term (20th to 80th percentile shifts from 18.0 to 22.6). However ended streams (which has only 9 estimates from 3 studies) does yield statistically significant and economically meaningful decline in marginal returns to increases in the magnitude of stream transfers that have ended (20th to 80th percentile shifts from 66.9 to 37.6).

4.5 Targeting and Framing Effects

In Table 7, we report on the differential impact of programs targeted to women (versus to men or non-targeted). We consider a program targeted to women (men) if the cash is intentionally given to women (men) exclusively or if greater than 80% of the intended recipients are female (male). Programs targeted to women produce greater consumption effects than programs without any gender targeting: Female-targeted UCTs lead to a \$4.3

increase per \$100 total transfer amount in monthly total household consumption (95% CI: 3.3, 5.4) compared to a \$1.9 increase per \$100 total transfer amount (95% CI: 1.1, 2.7) for non-targeted programs. This difference appears to driven primary by greater food consumption. Female-targeted transfers on average also generate considerably larger treatment effects on income than non-targeted programs: \$1.9 per \$100 of total transfer (95% CI: 1.2, 2.5) versus a 95% credibility interval of 0.4 to 1.4 for non-targeted UCTs.

Other results do not differ between targeting categories, with credibility interval overlapping substantially for treatment effects on child welfare outcomes, such as heightfor-age (HAZ), weight-for-age z-scores (WAZ), and school enrollment, which may be a consequence of the imprecision of our estimates. As there are very few male-targeted programs, we generally lack the ability to credibly distinguish differences between maletargeted programs and female-targeted or non-targeted programs for any outcomes. The exception is income, where we have relatively more data on male-targeted programs. Here we observe larger effects for male-targeted programs than either non-targeted or femaletargeted programs.

In Table 8, we compare impacts from programs that employ framing to encourage spending on children or food and programs without such framing. In Panel A, we find point estimates for framed transfers are larger and outside the 95% credibility interval for non-framed for four outcomes: food consumption, food security, income, and psychological well-being. Findings from our monthly tranche specification in Panel B are similar, with even more stark differences for food consumption and food security z-scores. These results suggest that framing improves food-security related outcomes, but we do not find credible evidence that it has any positive effect on child-related outcomes, such as HAZ, WAZ, and school enrollment.

4.6 Benefit-Cost Analysis

We construct two simple models of future cash flows to estimate the returns to UCTs and compare the relative benefits of various program designs. Similar to Blattman et al. (2016), we define benefits as the predicted treatment effects on consumption and costs as the total transfer amount, discounting all values to the first month of the program using a 5% discount rate. Our approach, however, adds a layer of sophistication by leveraging our dynamic effects results.

We present the results of our benefit-cost analysis in Table 9. In Panel A, we display benefit-cost ratios (BCRs) from a binary dynamic effects model which, using our estimates from Panels A1 and B1 of Table 5, assumes short-term treatment effects last until month 18 and long-term treatment effects persist thereafter. Assuming 24% administrative costs, this model estimates a BCR of 3.1 for lump sum transfers or 1.5 - 4.2 for stream programs of varying duration.

Our dynamic effects binary model will overestimate the impact of UCTs if the longrun benefits in fact deteriorate more rapidly than the 5% discount rate. The dynamic effects polynomial model attempts to address this shortcoming. Using estimates from Panels A2 and B2 of Table 5, this model assumes that benefits amplify as transfers are ongoing and dissipate once transfers are completed.²⁰ Accounting for 24% administrative costs, we find that lump sum transfer yield a BCR of 0.8 while stream programs lasting 12 to 48 months yield BCRs ranging from 0.9 to 1.4. Longer stream programs prove more cost-effective despite higher costs due the amplification effect of ongoing streams.

²⁰Our model predicts that benefits fall to zero approximately 8 years after transfers end.

5 Conclusion

The large-scale expansion of randomized evaluations over the past several decades provides an opportunity for pooling information across evaluations to make important contributions both to policy and to the adjudication of whether or not the empirical lessons from evaluations are robust. Cash transfers are an especially well-suited type of intervention for such an exercise, because the degrees of intervention variation are more limited and the implementation fidelity is easier to define and less likely to vary and drive results. We therefore conduct a meta-analysis based on 114 studies from 72 randomized evaluations.

We present two layers of main results. First, for the average effects, we find positive and strong average treatment effects on a wide range of outcomes, and irrespective of whether transfer frequency is lump-sum or stream: consumption, income, labor force participation, school enrollment, food security, psychological well-being, assets, and child height-for-age. Monthly household consumption increases by \$67 per \$100 monthly transfer in response to ongoing stream programs and by \$2.2 per \$100 transferred (i.e., a 26% annualized social return on investment) in response to lump sums. Monthly income improves by \$29.7 per \$100 monthly tranche for ongoing stream transfers and by \$1.6 per \$100 total transfer for lump sums. Furthermore, we find similarly strong impacts in the long run (18-48 months) as well as short run (0-18 months), although the impacts dissipate partially if transfers stop and amplify if transfers continue (i.e., ongoing stream transfers are partially consumed and partially invested, leading to larger long-run than short-run impacts). Lastly, we demonstrate that UCTs encourage or at worst do not lower labor supply, contradicting "dependency" theories that cash transfers discourage work.

Second, key elements of program design generate substantial impact variation. UCTs targeted to women have larger impacts on consumption and income than non-targeted programs (although transfers targeted to men generate even higher impact on income yet smaller impacts on consumption, but also are derived from only four programs as com-

pared to 16 and 19 programs for female-targeted and untargeted, respectively). There is also evidence that accompanying UCTs with child-focused framing may improve outcomes related to food security.²¹ Furthermore, considering transfer frequency and timing relative to program completion proves critical to understanding households' consumption and investment response to cash transfers. Ongoing stream transfers produce larger consumption effects while completed stream programs and lump sum transfers facilitate greater asset accumulation. Impacts on income are similar regardless of disbursement schedule.

The fact that lump sum cash transfers spur gains in consumption and income comparable to streams that have ended contradicts the common intuition that lump sums should have a "comparative advantage" in facilitating productive investment. One possibility is that, when assured of a continuing stream of cash transfers, poor households are adept at transferring resources across time to take advantage of investment opportunities. This suggests further analysis that explores heterogeneity in outcomes with respect to access to quality savings opportunities may be a fruitful avenue. This could motivate the design of cash transfers that combine access to savings with stream cash flows, an increasingly easy and low-cost add-on, given the expansion of mobile money. A second possibility is that lump sum transfers create in a sense too much slack, and the marginal dollars are not spent efficiently. This could be due to other market frictions leading to rapidly diminishing marginal returns or due to psychological mechanisms such as cognitive scarcity (see, Mullainathan and Shafir 2013).

We further highlight two important cross-cutting lessons from the data. First, treatment effects appear to be constant over time, which given our data is best understood as

²¹While we do not include conditional cash transfers (CCTs), other meta-analyses have, and find for example that CCTs increase primary and secondary school enrollment by 1.6 percentage points (95% CI: 0.9, 2.4) and 3.5 percentage points (95% CI: 2.4, 4.6) per \$100 total transfer amount, respectively (Baird et al. 2014). This is larger than our estimate of 1.1 percentage points (95% CI: 0.4, 1.9) on overall enrollment. Baird et al. 2014 also directly compares CCTs to UCTs, estimating larger but not statistically significant marginal impacts of conditionality. Studies investigating anthropometric outcomes find conditionality limits improvements in child weight but has no effect on height (Manley, Balarajan, et al. 2020; Manley, Alderman, et al. 2022).

up to 48 months after the onset of transfer. This is broadly in line with McGuire et al. (2022) which finds that effects on subjective well-being and depression dissipate at modest rates. There is a clear need for more long-term, follow-up data (Bouguen et al. 2019). Further follow-ups would help trace out potential dissipation or augmentation effects, as most data on lump sum transfers are collected 12 to 48 months after treatment.

Second, we find fairly constant marginal returns with respect to transfer size. The coefficients on the squared term for transfer size is precisely estimated and close to zero, and we do not have the power to estimate functional form more precisely. This null effect is not consistent with "threshold" poverty trap models with large indivisible goods that assume expanding returns. However, with such thresholds inevitably differing across people and markets (or perhaps being above the transfer sizes tested), we cannot rule out asset-based threshold models of poverty.

We close with three methodological considerations that limit how much one can learn from a meta-analysis of this style. First, with respect to many of the most interesting questions, our analysis is severely constrained by not incorporating household-level data. We lack sufficient variation on many important dimensions that require estimating withinstudy heterogeneity or more detailed re-formulation of outcome variables from raw data in order to sync data across studies. For example, we are largely unable to speak to consumption patterns beyond distinguishing total from food consumption. We are also unable to identify the type of assets recipients tend to purchase as this information is not commonly being collected, in particular not for stream programs. Among other things, this impedes a further investigation into the question as to whether the discrepancy between the positive but more modest effects of lump sum transfers on consumption despite their pronounced effect on total assets is due to investments in unproductive, but potentially welfare-enhancing, types of assets (e.g., furniture, house improvements).

Second, while as discussed above there is a constant push for longer term follow-ups

(true not just for cash transfers, but for most development interventions), we suggest that we also need more *immediate* data, data that helps illuminate how transfers get spent. This is particularly true for lump sum transfers, to have clearer understanding of households' immediate consumption and investment decisions upon receipt of funds. This question in general is understudied, and cannot be answered well by merely asking people what they did with the funds (Karlan et al. 2016). Instead, we need more studies that do the first follow-up at about one month, in order to establish the initial changes in outflows that occur because of the receipt of the cash transfer. Then, and particularly if this turned out to be predictable from baseline questions (either broadly generic questions, or intentquestions about what they would want to spend any funds received in the next month), analysis could sort households into likely short-run patterns, to then examine how that then led to longer-run changes for households. Furthermore, an exercise could lead to development of "surrogate" measures, i.e. "predictive" outcomes that can be tracked in the short-run and are good predictors of long-run impact. Validation of such measures would then create opportunities for more rapid-fire learning about how to transfer cash, what messages to include, timing, amounts, etc.

Third, we have a herding cats measurement methods problem. While some standards exist with respect to survey and question design, much variation persists, and is both inevitable and healthy. We do not suggest our community knows the best ways to measure; we want innovation in measurement methods. And some variation in survey methods are a natural and important by-product of contextualizing a survey to a given country, culture, economy, etc. These challenges are exacerbated by inconsistent reporting standards at journals (although this has improved considerably, see Nosek et al. (2015)). But while improved norms and compliance in sharing data and survey instruments help considerably, that does not address the challenge created by the variation in what is actually collected in surveys.

Despite these limitations, we believe aggregating reported point estimates at the

study-level sheds important light on several theoretical and policy questions. But, important program, study, and context variables– variables either in hand or easily accessible– could not be included in our preferred specifications due to power considerations. For example, we did not have sufficient variation on modality (mobile money versus cash), or timing within the year (particularly important for farmers). Yet despite the limitations, aggregating results from 114 studies yields important theoretical and policy insights, and also points to specific questions that can and should be tackled with synced micro-level data. Lastly, and perhaps most critically, these estimates can serve as a "cash benchmark": if designing a program to try to improve a specific outcome, this analysis provides an estimate for what a simple cash transfer can deliver.

References

- Alexander, L. Brown et al. (2021). Meta-Analysis of Empirical Estimates of Loss-Aversion. eng. CESifo Working Paper 8848. Munich.
- Alley, Joshua (Sept. 2022). "Using Hierarchical Models to Estimate Heterogeneous Effects". In: Working Paper.
- Avitabile, Ciro, Jesse M. Cunha, and Ricardo Meilman Cohn (Dec. 2019). The Medium Term Impacts of Cash and In-Kind Food Transfers on Learning.
- Baird, Sarah et al. (Jan. 2014). "Conditional, Unconditional and Everything in Between: a Systematic Review of the Effects of Cash Transfer Programmes on Schooling Outcomes". In: Journal of Development Effectiveness 6.1. Number: 1, pp. 1–43.
- Bandiera, Oriana et al. (Dec. 2021). "Do Women Respond Less to Performance Pay? Building Evidence from Multiple Experiments". In: American Economic Review: Insights 3.4, pp. 435–54.
- Banerjee, Abhijit, Esther Duflo, et al. (2015). "A Multifaceted Program Causes Lasting Progress for the Very Poor: Evidence from Six Countries". In: Science 348.6236, p. 1260799.

- Banerjee, Abhijit, Rema Hanna, et al. (Aug. 2017). "Debunking the Stereotype of the Lazy Welfare Recipient: Evidence from Cash Transfer Programs". In: World Bank Research Observer 32.2, pp. 155–184.
- Bastagli, Francesca, Jessica Hagen-Zanker, and Georgina Sturge (July 2016). Cash Transfers: What Does the Evidence Say? Overseas Development Institute.

Betancourt, Michael (Nov. 2020). Hierarchical Modeling.

- Blattman, Christopher et al. (Apr. 2016). "The Returns to Microenterprise Support among the Ultrapoor: A Field Experiment in Postwar Uganda". In: American Economic Journal: Applied Economics 8.2, pp. 35–64.
- Borenstein, Michael et al. (2010). "A basic introduction to fixed-effect and random-effects models for meta-analysis". In: *Research Synthesis Methods* 1.2, pp. 97–111.
- Bouguen, Adrien et al. (2019). "Using Randomized Controlled Trials to Estimate Long-Run Impacts in Development Economics". In: Annual Review of Economics 11.1, pp. 523–561.
- Burke, Marshall, Solomon M. Hsiang, and Edward Miguel (2015). "Climate and Conflict".In: Annual Review of Economics 7.1, pp. 577–617.
- Cash Evidence Explorer (Apr. 2023). GiveDirectly. URL: https://www.givedirectly. org/cash-evidence-explorer/.
- Chu, Haitao, Sining Chen, and Thomas A. Louis (2009). "Random Effects Models in a Meta-Analysis of the Accuracy of Two Diagnostic Tests Without a Gold Standard".
 In: Journal of the American Statistical Association 104.486, pp. 512–523.
- Croke, Kevin et al. (July 2016). Meta-Analysis and Public Policy: Reconciling the Evidence on Deworming.
- De Finetti, Bruno (Jan. 1972). Probability, Induction and Statistics. The Art of Guessing.In collab. with Bruno De Finetti. John Wiley & Sons.
- Evans, David K. and Anna Popova (Jan. 2017). "Cash Transfers and Temptation Goods".
 In: *Economic Development and Cultural Change* 65.2. Publisher: The University of Chicago Press, pp. 189–221. ISSN: 0013-0079. (Visited on 04/08/2024).

- Gelman, Andrew, Daniel Simpson, and Michael Betancourt (2017). "The Prior Can Often Only Be Understood in the Context of the Likelihood". In: *Entropy* 19.10.
- Gelman, Andrew B. et al. (1995). Bayesian Data Analysis. Boca Ratan, Florida: Chapman and Hall/CRC.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2001). The Elements of Statistical Learning. Springer Series in Statistics. New York, NY, USA: Springer New York Inc.
- Heeg, Bart et al. (Jan. 2023). "Bayesian hierarchical model-based network meta-analysis to overcome survival extrapolation challenges caused by data immaturity". In: *Journal* of Comparative Effectiveness Research 12.
- Hidrobo, Melissa and Lia Fernald (Jan. 2013). "Cash Transfers and Domestic Violence".In: Journal of Health Economics 32.1. Number: 1, pp. 304–319.
- Kabeer, Naila and Hugh Waddington (July 2015). "Economic Impacts of Conditional Cash Transfer Programmes: a Systematic Review and Meta-Analysis". In: Journal of Development Effectiveness 7.3. Number: 3, pp. 290–303.
- Karlan, Dean, Adam Osman, and Jonathan Zinman (July 1, 2016). "Follow the Money Not the Cash: Comparing Methods for Identifying Consumption and Investment Responses to a Liquidity Shock". In: Journal of Development Economics 121, pp. 11–23. ISSN: 0304-3878.
- Kondylis, Florence and John Loeser (Sept. 2021). Intervention Size and Persistence. Publisher: World Bank, Washington, DC.
- Liu, Yulun, Stacia DeSantis, and Yong Chen (Mar. 2017). "Bayesian Mixed Treatment Comparisons Meta-Analysis for Correlated Outcomes Subject to Reporting Bias". In: *Journal of the Royal Statistical Society: Series C (Applied Statistics)* 67.
- Manley, James, Harold Alderman, and Ugo Gentilini (Apr. 2022). "More Evidence on Cash Transfers and Child Nutritional Outcomes: a Systematic Review and Meta-Analysis".
 In: BMJ Global Health 7.4. Number: 4, e008233.

- Manley, James, Yarlini Balarajan, et al. (Dec. 2020). "Cash Transfers and Child Nutritional Outcomes: a Systematic Review and Meta-Analysis". In: *BMJ global health* 5.12, e003621.
- McGuire, Joel, Caspar Kaiser, and Anders M. Bach-Mortensen (Mar. 2022). "A Systematic Review and Meta-Analysis of the Impact of Cash Transfers on Subjective Well-Being and Mental Health in Low- and Middle-Income Countries". In: Nature Human Behaviour 6.3. Number: 3, pp. 359–370.
- Meager, Rachael (Jan. 2019). "Understanding the Average Impact of Microcredit Expansions: A Bayesian Hierarchical Analysis of Seven Randomized Experiments". In: *American Economic Journal: Applied Economics* 11.1. Number: 1, pp. 57–91.
- (June 2022). "Aggregating Distributional Treatment Effects: A Bayesian Hierarchical Analysis of the Microcredit Literature". In: *American Economic Review* 112.6, pp. 1818–47.
- Mullainathan, Sendhil and Eldar Shafir (Sept. 2013). Scarcity: Why Having Too Little Means So Much. Times Books. 302 pp.
- Noam Angrist, Rachael Meager (June 2023). "Implementation Matters: Generalizing Treatment Effects in Education". In: 802.
- Nosek, B.A. et al. (2015). "Promoting an open research culture". In: *Science* 348.6242, pp. 1422–1425. DOI: 10.1126/science.aab2374.
- Raudenbush, Stephen W. and Anthony S. Bryk (1985). "Empirical Bayes Meta-Analysis".In: Journal of Educational Statistics 10.2. Number: 2, pp. 75–98.
- Rubin, Donald B. (1981). "Estimation in Parallel Randomized Experiments". In: Journal of Educational Statistics 6.4. Number: 4, pp. 377–401.
- Stan (2022). Stan User's Guide. URL: https://mc-stan.org/docs/stan-usersguide/index.html.
- Stegmueller, Daniel (2013). "How Many Countries for Multilevel Modeling? A Comparison of Frequentist and Bayesian Approaches". In: American Journal of Political Science 57.3, pp. 748–761.

- Thaler, Richard H. and Cass R. Sunstein (Feb. 24, 2009). Nudge: Improving Decisions About Health, Wealth, and Happiness. Penguin. 322 pp. ISBN: 978-0-14-311526-7.
- Vivalt, Eva (Sept. 2020). "How Much Can We Generalize From Impact Evaluations?" In: Journal of the European Economic Association 18.6, pp. 3045–3089.
- Wollburg, Clara et al. (Feb. 2023). "Do Cash Transfers Alleviate Common Mental Disorders in Low- and Middle-Income Countries? A Systematic Review and Meta-Analysis".
 In: *PloS One* 18.2. Number: 2, e0281283.
| Comparison of Cash Transici Victa-Analysis Lapers | | | | | | | | | |
|---|------------------------|----------|----------------|--|------------------------|---|-----|-------------------------------------|--------|
| | (1) | (2) | (3) | (4) | (5) | (6) | (7) | (8) | (9) |
| | Number of observations | | Iden
(count | <i>Identification (count of studies)</i> | | <i>Conditionality</i>
(count of studies) | | <i>Timing</i>
(count of studies) | |
| Meta-analysis | Studies | Programs | Estimates | RCT | Quasi-
experimental | UCT | CCT | Lump
sum | Stream |
| This study | 114 | 72 | 541 | 114 | 0 | 114 | 0 | 44 | 77 |
| Baird et al. (2014) | 75 | 35 | 64 | 12 | 23 | 9 | 30 | | |
| Baranov et al. (2021) | 14 | 11 | | 9 | 5 | 6 | 8 | 2 | 14 |
| Evans and Popova (2017) | 13 | 11 | 19 | 5 | 8 | 5 | 8 | 1 | 12 |
| Garcia and Saavedra (2017) | 59 | 47 | 94 | Yes | Yes | 0 | 94 | 7 | 40 |
| Guimarães et al. (2023) | 16 | 14 | | 16 | 0 | 2 | 14 | 1 | 15 |
| Kabeer and Waddington (2015) | 46 | 11 | | Yes | Yes | 0 | 46 | 0 | 46 |
| Kondylis and Loeser (2021) | 7 | 7 | 18 | 7 | 0 | 7 | 0 | 4 | 4 |
| Little et al. (2021) | 17 | 17 | | 14 | 3 | 7 | 10 | 0 | 17 |
| Manley et al. (2022) | 112 | 64 | 129 | Yes | Yes | 62 | 50 | 1 | 111 |
| McGuire et al. (2022) | 45 | | 110 | 27 | 18 | 31 | 14 | 13 | 32 |
| Wollburg et al. (2023) | 18 | 13 | | 18 | 0 | 16 | 3 | 3 | 15 |

 Table 1a

 Comparison of Cash Transfer Meta-Analyses Papers

For Baird et al. (2014) and Garcia and Saavedra (2017), the counts represent the number of programs rather than studies because study-level information was not reported. For this study, the sum of the count of lump sum and stream studies in columns 8 and 9 exceeds the total number of studies in column 1 because seven studies report results on both stream and lump sum transfers.

Table 1b						
	(1)	(2)	(3)	(4)		
Meta-analysis	Average total transfer amount	Average follow-up timing	Effect interpretation	Outcomes		
This study	854	19 months since first transfer	Treatment effect (TE) per dollar transferred	Consumption, food security, assets, income, labor supply (adult), psychological well-being, school enrollment, and child development		
Baird et al. (2014)	351 (per year)		Binary TE of receiving UCT	School enrollment, attendance, and test scores		
Baranov et al. (2021)			Binary TE of receiving UCT	Intimate partner violence		
Evans and Popova (2017)			Binary TE of receiving UCT	Temptation goods expenditure		
Garcia and Saavedra (2017)			Binary TE of receiving UCT and TE per dollar transferred	School enrollment and attendance		
Guimarães et al. (2023)	143	13 months since baseline	Binary TE of receiving UCT	HIV testing, treatment, and incidence		
Kabeer and Waddington (2015)			Binary TE of receiving UCT	Labor supply (child and adult), consumption		
Kondylis and Loeser (2021)	963	18 months since first transfer	TE per dollar transferred	Consumption		
Little et al. (2021)	8-75 (per month)		Binary TE of receiving UCT	Child development and child nutrition		
Manley et al. (2022)	83	29 months since baseline	Binary TE of receiving UCT	Child development, child nutrition, and incidence of child illness		
McGuire et al. (2022)	855	23 months since first transfer	Binary TE of receiving transfer with covariate for transfer amount	Psychological well-being		
Wollburg et al. (2023)	773	13 months since last transfer	Binary TE of receiving UCT	Psychological well-being		

Transfer amounts reported in 2010 USD PPP. For this study, we report means across programs in the primary outcomes analysis sample.

Count of Frograms and Estimates by Fro	Si ani Des	ngn i catai	05		
	(1)	(2)	(3)	(4)	(5)
	All	Lump Sum	Stream	Stream- Ended	Stream- Ongoing
Panel A: Count of Programs for Primary Outcomes					
Total count of programs	72	39	37	17	29
Transfer paid physical cash	33	12	21	9	18
Transfer paid via mobile money or bank transfer	38	25	17	8	12
Implemented by government	22	5	17	6	15
Implemented by NGO	37	25	16	10	11
Implemented by researchers	15	10	5	1	4
Framing for child development or food security	20	3	17	6	16
No framing for child development or food security	53	36	21	11	14
Transfer targeted to women	32	11	21	8	18
Transfer not targeted or randomized to men or women	35	24	15	9	10
Transfer targeted to men	5	4	1	0	1
Panel B: Count of Estimates for Primary Outcomes					
Total count of estimates	541	275	242	89	153
Transfer paid physical cash	201	63	138	33	105
Transfer paid via mobile money or bank	323	195	104	56	48
Implemented by government	139	28	111	9	102
Implemented by NGO	342	202	120	77	43
Implemented by researchers	60	45	11	3	8
Framing for child development or food security	131	16	115	24	91
No framing for child development or food security	410	259	127	65	62
Transfer targeted to women	216	75	141	47	94
Transfer not targeted or randomized to men or women	301	182	95	42	53
Transfer targeted to men	24	18	6	0	6
Panel C: Count of Estimates for Monthly Household Consumption					
Total count of estimates	82	41	41	14	27
Transfer paid physical cash	30	8	22	5	17
Transfer paid via mobile money or bank	50	41	19	9	10
Implemented by government	22	4	18	1	17
Implemented by NGO	55	34	21	12	9
Implemented by researchers	5	3	2	1	1
# of Programs, Framing for child development or food security	18	0	18	3	15
# of Programs. No framing for child development or food security	64	41	23	11	12

 Table 2

 Count of Programs and Estimates by Program Design Features

The sum of lump sum and stream programs in Columns 2 and 3 of Panel A does not always equal the total number of programs in Column 1 because some programs implement both stream and lump sum transfers. Similarly, the sum of estimates in Columns 2 and 3 of Panels B and C does not always equal the total number of estimates in Column 1 because Column 1 includes some additional estimates from regressions that pool across lump sum and stream treatment arms. Also, the sum of stream-ended and stream-ongoing programs in Columns 4 and 5 of Panel A does not always equal the total number of stream programs administer follow-up surveys both as the program is ongoing and after it has ended.

Average Treatment Effe	ects on Primary Outcom	nes	
	(1)	(2)	(3)
	Predicted Treatment Effect	Predicted Treatment Effect of Median Transfer Amount	Estimates (Programs)
	of \$100	(\$575 total or \$36 monthly)	(110grams)
Panel A. Treatment Effect per Total Transfer Amount			
Flow Outcomes			
Monthly Household Consumption (with controls)	2.7	15.6	82
	(2, 3.5)	(11.3, 20)	(45)
Monthly Household Food Consumption	2.3	13.1	49
	(1.6, 3)	(9.4, 17.2)	(31)
Monthly Income	1.4	8.2	88
	(1, 1.9)	(5.7, 10.8)	(38)
Hours Worked per Week	0.1	0.5	25
	(-0.1, 0.2)	(-0.4, 1.3)	(13)
Labor Force Participation (percentage points)	0.8	4.8	1/
	(0.4, 1.3)	(2.4, 7.3)	(11)
School Enrollment (percentage points)	(0.5, 1.5)	(26.87)	(16)
Food Sequeity & Secure	(0.3, 1.3)	(2.0, 8.7)	(10)
rood security z-score	(0.02, 0.04)	(0.14, 0.24)	(25)
Psychological Well being z Score	(0.02, 0.04)	(0.14, 0.24)	(23)
i sychological weil-beilig 2-5core	(0.02, 0.05)	(0.12, 0.28)	(20)
	(0.02, 0.05)	(0.12, 0.20)	(50)
Stock Outcomes			
Stock of Total Assets	19.6	112.6	57
	(12.2, 27.3)	(70.1, 157.1)	(28)
Stock of Financial Assets	1.7	9.7	49
	(1.1, 2.3)	(6.4, 13.2)	(24)
Height-for-Age z-Score	0.0	0.04	32
	(0.002, 0.014)	(0.01, 0.08)	(18)
weight-for-Age z-Score	0.0	0.04	(10)
Stunting (noncontago nointe)	(-0.0001, 0.0127)	(-0.0006, 0.0731)	(10)
Stunning (percentage points)	(-0.6, 0.2)	(-3, 4, 1)	(8)
	(-0.0, 0.2)	(-5.4, 1)	(8)
Panel B. Treatment Effect per Monthly Tranche Amount			
Flow Outcomes	52.1	19.0	0 1
Monthly Household Consumption (with controls)	(27, (9, 1))	(12, 4, 24, 7)	02 (45)
Monthly Household Food Consumption	(37, 08.1)	(13.4, 24.7)	(43)
Monully Household Food Consumption	(40, 67,7)	(14.5.24.6)	(21)
Monthly Income	(40, 07.7)	(14.3, 24.0)	88
Wontiny meenie	(15.4.30.6)	(5.6, 11, 1)	(38)
Hours Worked per Week	(13.4, 30.0)	0.2	25
Hours worked per week	(0.003, 1.212)	(0.001, 0.44)	(13)
Labor Force Participation (percentage points)	15.8	5.7	17
Euror Porce Participation (percentage points)	(6.1, 26)	(2, 2, 9, 4)	(11)
School Enrollment (percentage points)	14.3	5.2	26
Seneor Emoliment (percentage permo)	(6.3, 22.9)	(2.3, 8.3)	(16)
Food Security z-Score	0.7	0.2	47
5	(0.5, 0.8)	(0.2, 0.3)	(25)
Psychological Well-being z-Score	0.5	0.2	56
	(0.3, 0.7)	(0.1, 0.3)	(30)
Panel C. Treatment Effect on Monthly Household Consumptio	n without Controls		. /
rance of recatinent Effect on Montiny Household Collsumptio	n without Collerois		
Treatment Effect per Total Transfer Amount	2.4	14.0	82
	(1.9, 3)	(10.8, 17.3)	(45)
Treatment Effect per Monthly Tranche Amount	49.5	18.0	82
	(38.1, 61.9)	(13.8, 22.5)	(45)

Table 3

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for stream transfers. For lump sum UCTs, the monthly tranche amount is calculated by dividing the total transfer amount by the number of months since the first transfer. The median total transfer amount is \$575, which is calculated by taking the median of the average total transfer amounts of the 39 lump sum programs in our sample. The median monthly tranche amount is \$36, which is calculated by taking the median of the average total transfer amounts of the 37 stream programs in our sample. Our dataset for **Monthly Household Consumption** uses treatment effects on total consumption when reported; we use treatment effects on non-durable consumption or food consumption when total consumption from a model that does not include these controls. Our dataset for **Monthly Income** uses reported treatment effects are only reported by sub-category of income, e.g., wage earnings, non-farm enterprise profits, etc., then the sub-category with the highest control group mean is used instead. See Appendix Table D.1. for a comparison to analysis that only uses reported estimates on total household or individual income.

	(1)	(2)	(3)	(4)	(5)	(6)
	Predicted	Treatment Effect of	f \$100		Estimates (Programs)	
	Ongoing Stream	Completed Stream	Lump Sum	Ongoing Stream	Completed Stream	Lump Sum
Panel A. Treatment Effect per Total Transfer A	mount					
Flow Outcomes						
Monthly Household Consumption	3.2	2.8	2.2	27	14	41
	(2.3, 4.2)	(1.3, 4.4)	(1.3, 3.2)	(20)	(7)	(25)
Monthly Household Food Consumption	3.3	0.4	0.8	22	5	21
	(2.61, 4.16)	(-0.8, 1.6)	(0.1, 1.7)	(15)	(3)	(15)
Monthly Income	1.7	1.1	1.6	11	12	64
	(0.6, 2.8)	(0.1, 2.1)	(1, 2.1)	(7)	(4)	(29)
Hours Worked per Week	0.3	0.0	0.2	3	5	13
	(-0.1, 0.7)	(-0.4, 0.3)	(0, 0.4)	(2)	(2)	(7)
Labor Force Participation (percentage points)	0.6	0.8	1.1	6	5	6
	(-0.1, 1.4)	(0, 1.6)	(0.3, 1.9)	(5)	(2)	(4)
School Enrollment (percentage points)	1.2	0.6	0.3	15	2	6
	(0.4, 2)	(-1.3, 2.4)	(-0.8, 1.3)	(10)	(2)	(4)
Food Security z-Score	0.04	0.0	0.0	14	12	19
	(0.02, 0.05)	(0.03, 0.06)	(0.01, 0.04)	(9)	(6)	(13)
Psychological Well-being z-Score	0.1	0.01	0.02	15	12	26
	(0.04, 0.09)	(-0.01, 0.04)	-0.001, 0.037)	(9)	(7)	(16)
Stock Outcomes						
Stock of Total Assets	1.5	33.4	21.7	7	9	38
	(-16.9, 19.9)	(16.4, 50.5)	(11.8, 32.2)	(5)	(3)	(22)
Stock of Financial Assets	2.4	1.4	1.6	6	7	33
	(0.9, 3.9)	(-0.5, 3.4)	(0.8, 2.5)	(4)	(3)	(17)
Height-for-Age z-Score	0.01	0.02	0.0	20	6	4
	(-0.001, 0.013)	(0.007, 0.039)	-0.008, 0.027)	(13)	(5)	(2)
Weight-for-Age z-Score	0.02	0.0	0.0	7	2	4
	(0.003, 0.028)	(-0.011, 0.023)	(-0.013, 0.01)	(6)	(2)	(2)
Panel B. Treatment Effect per Monthly Tranch	e Amount					
Flow Outcomes						
Monthly Household Consumption	67.0	48.9	39.1	27	14	41
y 1	(47.7.87.4)	(14.4, 84.5)	(20.8, 57.8)	(20)	(7)	(25)
Monthly Household Food Consumption	73.2	24.0	22.6	22	5	21
y 1	(58, 89.7)	(-23.4, 74)	(6.2, 40.6)	(15)	(3)	(15)
Monthly Income	29.7	18.0	23.6	11	12	64
, ,	(12.1, 48.1)	(1, 36.3)	(14.6, 33.3)	(7)	(4)	(29)
Hours Worked per Week	1.7	0.3	0.6	3	5	13
•	(0.3, 2.9)	(-0.9, 1.5)	(-0.2, 1.4)	(2)	(2)	(7)
Labor Force Participation (percentage points)	9.2	22.7	16.5	6	5	6
	(-9.6, 27.7)	(3.7, 43)	(-1.6, 34.5)	(5)	(2)	(4)
School Enrollment (percentage points)	16.7	13.3	-2.2	15	2	6
	(7.9, 26.9)	(-10.1, 35.1)	(-13.3, 8.8)	(10)	(2)	(4)
Food Security z-Score	0.8	1.0	0.4	14	12	19
-	(0.5, 1.2)	(0.6, 1.3)	(0.1, 0.6)	(9)	(6)	(13)
Psychological Well-being z-Score	1.0	0.1	0.2	15	12	26
	(0.7, 1.4)	(-0.3, 0.5)	(-0.1, 0.5)	(9)	(7)	(16)

Table 4

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for completed streams and lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for ongoing stream transfers. Median monthly tranche amounts are \$39, \$45 and \$40 for ongoing streams, completed streams, and lump sum programs, respectively. Median total transfer amounts are \$652, \$674, and \$419 for ongoing streams, completed streams, and lump sum programs, respectively. Our dataset for **Monthly Household Consumption** uses treatment effects on total consumption when reported; we use treatment effects on non-durable consumption or food consumption when total consumption is unavailable. Our analysis controls for whether food and durable goods are included in total consumption. Our dataset for **Monthly Income** uses reported treatment effects on total household or individual income when reported; if treatment effects are only reported by sub-category of income, e.g., wage earnings, non-farm enterprise profits, etc., then the sub-category with the highest control group mean is used instead. See Appendix Table D.1. for a comparison to analysis that only uses reported estimates on total household or individual income. We do not report results on stunting due to data limitations. Effects with four or fewer estimates have been graved out.

Dyna	mic Effects by D	isbursement Sche	dule			
	(1)	(2)	(3)	(4)	(5)	(6)
	Monthly Household Consumption			Stock of Total Assets		5
	Ongoing Stream Program	Completed Stream Program	Lump Sum Program	Ongoing Stream Program	Completed Stream Program	Lump Sum Program
Panel A. Treatment Effect per Total Transfer Amount						
A1: Dynamic Effects Binary Model: Short-run versus Long-run						
Predicted Treatment Effects per \$100						
Estimated on Short-Term Estimates	2.2	3.8	2.3	0.3	30.1	21.4
(measurement up to 18 months after first transfer)	(0.9, 3.7)	(1.1, 6.4)	(1.3, 3.5)	(-29.4, 30)	(7.8, 52.3)	(7.3, 35.9)
Estimated on Long-Term Estimates	3.9	2.0	1.6	2.4	40.0	23.2
(measurement more than 18 months after first transfer)	(2.7, 5.1)	(0.3, 3.7)	(0.2, 3)	(-23.3, 28)	(9.4, 71.2)	(7.2, 39.7)
A2. Dynamic Effects Polynomial Model (months and months-sque	ured)					
Predicted Treatment Effects per \$100						
	2.3	2.3	2.2		25.2	18.9
Estimated at Month 12	(1, 3.7)	(0.6, 4)	(1.2, 3.2)		(10.9, 39.7)	(8, 30.1)
Estimated at March 24	4.1	1.9	1.8		29.0	22.6
Estimated at Month 24	(2.7, 5.4)	(-0.4, 4.3)	(0.6, 3.1)		(10.4, 47.8)	(9, 36.7)
Panel B. Treatment Effect per Monthly Tranche Amount						
B1: Dynamic Effects Binary Model: Short-run versus Long-run						
Predicted Treatment Effects per \$100						
Estimated on Short-Term Estimates	34.1	42.0	33.4			
(measurement up to 18 months after first transfer)	(12.3, 57.3)	(3.5, 80.5)	(15.3, 51.8)			
Estimated on Long-Term Estimates	98.5	36.5	33.2			
(measurement more than 18 months after first transfer)	(74.9, 122.6)	(-5.5, 80.1)	(6.6, 60.5)			
B2. Dynamic Effects Polynomial Model (months and months-squa	ured)					
Predicted Treatment Effects per \$100						
Estimated at Month 12	39.8	44.8	31.6			
Estimated at Wohth 12	(19.2, 61.6)	(12.7, 77.8)	(15.5, 48.1)			
Estimated at Month 24	89.7	56.2	43.1			
	(65.5, 114.8)	(13.5, 100.6)	(17.8, 69.1)			
Count of Estimates						
0 to 18 months since first transfer	15	4	23	3	6	20
19 to 36 months since first transfer	12	9	16	4	3	15
37 to 54 months since first transfer	0	1	1	0	0	3
55 to 108 months since first transfer	0	0	1	0	0	0
146 months since first transfer	0	0	0	0	0	0

Table 5

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. In Panel B, for dynamic effects for ongoing stream programs we define "months" as months since first transfer, whereas for completed stream programs and lump sums, we define "months" as months since the last transfer. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for completed streams and lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for ongoing stream transfers. Due to data limitations and similarity of average results, we estimate dynamic effects jointly on completed stream programs and lump sum programs in our polynomial model. Due to data limitations of the total assets dataset, the model estimated the parameters for months and months-squared interacted with ongoing streams (n = 7) performed poorly; we therefore present results from a model that only estimates dynamic effects for ended programs. Our dataset for Monthly Household Consumption uses treatment effects on total consumption when reported; we use treatment effects on non-durable consumption or food consumption when total consumption is unavailable. Our analysis controls for whether food and durable goods are included in total consumption. Effects with seven or fewer estimates have been grayed out.

	(1) Monthl	(2) y Household Consu	(3) mption	(4)	(4) (5) Stock of Total Assets	
	Ongoing Stream Program	Completed Stream Program	Lump Sum Program	Ongoing Stream Program	Completed Stream Program	Lump Sum Program
Panel A. Treatment Effect per Total Transfer Amount						
Base and Curvature Effects per \$100						
Base Effect		4.5 (1.5, 7.5)	2.4 (0.7, 4.2)		74.0 (37.3, 110.7)	17.0 (-0.01, 0.36)
Change in Effect with Respect to a \$100 Increase in Transfer Amount		-0.2	0.0		-2.9	0.5
Predicted Treatment Effects per \$100		(0.0, 0.1)	(011, 011)		(0.0, 0.0)	(, 2)
Estimated at 20th Percentile of Transfer Amount (\$213)		4.0 (1.6, 6.4)	2.4 (0.9, 3.9)		66.9 (35.2, 98.7)	18.0 (3.1, 33.7)
Estimated at 50th Percentile of Transfer Amount (\$575)		3.7 (1.6, 5.7)	2.4 (1, 3.7)		61.7 (33.6, 90)	18.9 (5.9, 32.4)
Estimated at 80th Percentile of Transfer Amount (\$1,281)		2.1 (0.03, 4.1)	2.2 (1.2, 3.2)		37.6 (21, 54.5)	22.6 (12.2, 33.5)
Panel B. Treatment Effect per Monthly Tranche Amount Base and Curvature Effects per \$100						
Base Effect	85.4 (57.3, 114.8)					
Change in Effect with Respect to a \$100 Increase in Transfer Amount	-36.5 (-78.8, 4)					
Predicted Treatment Effects per \$100						
Estimated at 20th Percentile of Transfer Amount (\$22)	77.5 (54.9, 101.1)					
Estimated at 50th Percentile of Transfer Amount (\$36)	69.4 (50, 89.8)					
Estimated at 80th Percentile of Transfer Amount (\$61)	61.3 (41, 82.3)					
Count of Estimates	27	14	41	7	9	38
(Programs)	(20)	(7)	(25)	(5)	(3)	(22)

 Table 6a

 Curvature with respect to Transfer Amount by Disbursement Schedule

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Since the outcome variable of our model is divide by the transfer amount, the transfer amount covariate is equivalent to the squared term of the transfer amount (i.e. the curvature effect) in a model where the outcome variable is not divided by the transfer amount. Results in Panel A are estimated using a model includes interaction terms between total transfer amount and indicator variables for completed streams and lump sums as well as indicators for all three disbursement schedules. Results in Panel B are estimated using a model includes an interaction term between nonthly tranche amount and an indicator for ongoing streams as well as indicator variables for all three disbursement schedules. Our dataset for **Monthly Household Consumption** uses treatment effects on total consumption when total consumption is unavailable. Our analysis controls for whether food and durable goods are included in total consumption. Effects with seven or fewer estimates have been grayed out.

	Table 6.b.								
	Monthly Household Consumption Stock of Total Assets								
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	
Program ID	Months Since Last Transfer	Disbursement Schedule	Transfer Amount Comparison	Transfer Ratio	Treatment Effect (TE) Ratio	TE Ratio / Transfer Ratio	Treatment Effect (TE) Ratio	TE Ratio / Transfer Ratio	
Panel A: With	in Study Comparisons								
55	(0,0)	Ongoing Stream	\$17 vs. \$112	6.57	0.69	0.11	17.06	2.60	
25	(3,2)	Completed Stream	\$384 vs. \$1449	3.77	2.32	0.61	2.16	0.57	
25	(27,20)	Completed Stream	\$384 vs. \$1449	3.77	0.85	0.23	1.10	0.29	
34	(5,5)	Completed Stream	\$422 vs. \$1267	3.00	2.18	0.73	NA	NA	
34	(5,5)	Completed Stream	\$422 vs. \$845	2.00	1.41	0.71	NA	NA	
34	(5,5)	Lump Sum	\$845 vs. \$1267	1.50	1.54	1.03	NA	NA	
55	(12,12)	Lump Sum	\$204 vs. \$1341	6.57	5.16	0.79	-3.22	-0.49	
37	(23,21)	Lump Sum	\$560 vs. \$1681	3.00	11.89	3.96	4.17	1.39	
34	(20,18)	Lump Sum	\$422 vs. \$1267	3.00	7.85	2.62	NA	NA	
56	(12,12)	Lump Sum	\$801 vs. \$1890	2.36	1.80	0.76	6.94	2.94	
34	(20,19)	Lump Sum	\$422 vs. \$845	2.00	10.58	5.29	NA	NA	
37	(23,22)	Lump Sum	\$560 vs. \$1121	2.00	5.89	2.94	1.38	0.69	
56	(12,12)	Lump Sum	\$1035 vs. \$1890	1.83	1.33	0.73	0.93	0.51	
56	(12,12)	Lump Sum	\$801 vs. \$1265	1.58	1.15	0.73	8.31	5.27	
37	(22,21)	Lump Sum	\$1121 vs. \$1681	1.50	2.02	1.35	3.02	2.01	
34	(19,18)	Lump Sum	\$845 vs. \$1267	1.50	0.74	0.49	NA	NA	
56	(12,12)	Lump Sum	\$1265 vs. \$1890	1.49	1.57	1.05	1.57	1.05	
56	(12,12)	Lump Sum	\$801 vs. \$1035	1.29	1.35	1.05	1.35	1.05	
56	(12,12)	Lump Sum	\$1035 vs. \$1265	1.22	0.85	0.70	0.85	0.70	
Panel B: Meta	-Analysis Predicted Tre	eatment Effects Compariso	ns						
20th percentile v	vs. 50th percentile	Ongoing Stream	\$21 vs. \$36	1.72	1.54	0.90			
20th percentile v	vs. 80th percentile	Ongoing Stream	\$21 vs. \$61	2.87	2.27	0.79			
50th percentile v	vs. 80th percentile	Ongoing Stream	\$36 vs. \$61	1.67	1.47	0.88			
20th percentile v	vs. 50th percentile	Completed Stream	\$213 vs. \$575	2.71	2.47	0.91	2.50	0.92	
20th percentile v	vs. 80th percentile	Completed Stream	\$213 vs. \$1281	6.03	3.12	0.52	3.39	0.56	
50th percentile v	vs. 80th percentile	Completed Stream	\$575 vs. \$1281	2.23	1.26	0.57	1.36	0.61	
20th percentile v	vs. 50th percentile	Lump Sum	\$213 vs. \$575	2.71	2.67	0.99	2.83	1.04	
20th percentile v	vs. 80th percentile	Lump Sum	\$213 vs. \$1281	6.03	5.55	0.92	7.54	1.25	
50th percentile v	vs. 80th percentile	Lump Sum	\$575 vs. \$1281	2.23	2.08	0.93	2.67	1.20	

Soft percentile vs. soft percentile vs. soft percentile Lump Sum S575 vs. S1281 2.25 2.08 0.93 2.67 1.20 Currency values reported in 2010 USD PPP. We use monthly tranche amount for ongoing streams and total transfer amount for lump sums and completed streams. Column 2 reflects the number of months elapsed since the last transfer and the measurement of the outcome. The first number in the pair corresponds to the MSLT of the TE corresponding to the lesser transfer, and the second to the larger transfer. Treatment Effect Ratios in column 6 and 8, take the TE corresponding to the bigger transfer amount in the numerator, and the TE corresponding to the lesser transfer amount in the denominator. If the TE Ratio /Transfer Ratio in Columns 7 and 9 is less (greater) than 1, then there are decreasing (increasing) marginal returns with respect to transfer amount.

	(1)	(2)	(3)	(4)	(5)	(6)
	Predicted Tree	Predicted Treatment Effect of \$100 Transfer			Estimates (Programs)	
	Not Targeted	Targeted to Women	Targeted to Men	Not Targeted	Targeted to Women	Targeted to Men
Panel A. Treatment Effect per Total Transfer An	nount					
Flow Outcomes						
Monthly Household Consumption	1.9	4.3	1.1	45	31	4
	(1.1, 2.7)	(3.3, 5.4)	(-4.3, 6.6)	(20)	(21)	(4)
Monthly Household Food Consumption	0.8	3.9		23	26	
	(0.2, 1.5)	(3.3, 5.4)		(13)	(18)	
Monthly Income	0.9	1.9	3.8	41	40	7
	(0.4, 1.4)	(1.2, 2.5)	(1.8, 5.8)	(19)	(16)	(4)
Labor Force Participation (percentage points)	0.9	0.8		7	10	
	(0.2, 1.5)	(0.2, 1.4)		(5)	(6)	
School Enrollment (percentage points)	0.8	1.3		16	10	
	(0.2, 1.5)	(0.4, 2.2)		(10)	(6)	
Food Security z-Score	0.03	0.03		26	21	
	(0.02, 0.04)	(0.02, 0.05)		(12)	(14)	
Psychological Well-being z-Score	0.03	0.05	0.02	26	25	6
	(0.01, 0.05)	(0.03, 0.07)	(-0.03, 0.07)	(12)	(16)	(5)
Stock Outcomes						
Stock of Total Assets	17.1	19.7	44.3	39	14	4
	(7.5, 26.8)	(5.7, 34.1)	(15.3, 74.2)	(16)	(10)	(4)
Stock of Financial Assets	1.7	1.9	0.2	36	10	3
	(1, 2.5)	(0.6, 3.4)	(-2.6, 3)	(15)	(6)	(3)
Height-for-Age z-Score	0.02	0.00		11	21	
	(0.01, 0.03)	(-0.002, 0.008)	(4)	(14)	
Weight-for-Age z-Score	0.0	0.01		7	8	
	(-0.01, 0.01)	(0.005, 0.022))	(3)	(7)	
Panel B. Treatment Effect per Monthly Tranche	Amount					
Nonthly Household Consumption	32.9	91.8	6.1	45	31	4
······································	(19.2, 46.8)	(72.5, 112.1)	(-79, 91)	(20)	(21)	(4)
Monthly Household Food Consumption	20.5	74.6	(, , , , -)	23	26	(1)
5 1	(7.64, 34.3)	(60.86, 89.1)		(13)	(18)	
Monthly Income	13.1	32.4	60.8	41	40	7
5	(5.3, 21.8)	(21.7, 43.9)	(24, 97.8)	(19)	(16)	(4)
Labor Force Participation (percentage points)	12.0	18.6	(= :, : ; : : :)	7	10	(1)
(i_1,,,,,,,, .	(-4.3, 28.1)	(5.4, 32.7)		(5)	(6)	
School Enrollment (percentage points)	11.1	20.4		16	10	
)	(1.3, 21.7)	(6.7, 34.6)		(10)	(6)	
Food Security z-Score	0.6	0.7		26	21	
······································	(0.4, 0.8)	(0.4. 1)		(12)	(14)	
Psychological Well-being z-Score	0.4	0.7	0.1	26	25	6
, , , , , , , , , , , , , , , , , , , ,	(0.06, 0.66)	(0.4, 1)	(-0.6, 0.8)	(12)	(16)	(5)

 Table 7

 Heterogeneous Treatment Effects on Primary Outcomes by Gender Targetin

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. A transfer is considered targeted to women (men) if the UCT is explicitely delivered to women (men) or if greater than 80% of the sample is compised of women (men). When there are at least four estimates from programs targeted to men, we conduct our analysis on all three sub-sets: Not Targeted, Targeted to Women, and Targeted to Men. When there are fewer than four estimates from programs targeted to men, we instead conduct our analysis on two sub-sets: Not Targeted to Women and Targeted to Women. We do not present results on total hours worked or stunting due to data limitations. Our dataset for **Monthly Household Consumption** uses treatment effects on total consumption when reported; we use treatment effects on non-durable consumption or food consumption when total consumption is unavailable. Our analysis controls for whether food and durable goods are included in total consumption. Our dataset for **Monthly Income** uses reported if treatment effects on total household or individual income when reported; if treatment effects are only reported by sub-category of income, e.g., wage earnings, non-farm enterprise profits, etc., then the sub-category with the highest control group mean is used instead. See Appendix Table D.1. for a comparison to analysis that only uses reported estimates on total household or individual income.

	(1)	(2)	(3)	(4)
	Predicted Tre	eatment Effect	Estim	ates
	of \$100	Transfer	(Progr	ams)
	No Framing	With Framing	No Framing	With Framing
Panel A. Treatment Effect per Total Transfer Amou	nt			
Flow Outcomes				
Monthly Household Consumption	2.0	4.8	64	18
	(1.2, 2.8)	(3.6, 6.1)	(34)	(11)
Monthly Household Food Consumption	1.4	2.5	33	16
5 1	(0.8, 2)	(1.6, 3.5)	(22)	(9)
Monthly Income	1.2	2.8	76	12
	(08.16)	(1642)	(33)	(5)
Hours Worked per Week	0.1	-0.7	24	1
Hours worked per week	(0.02, 0.2)	(14.001)	(12)	(1)
I shan Franz Dratisinstian (noncontrar asista)	(-0.03, 0.3)	(-1.4, 0.01)	(12)	(1)
Labor Force Participation (percentage points)	1.0	0.7	9	8
	(0.4, 1.6)	(0.1, 1.3)	(6)	(5)
School Enrollment (percentage points)	0.8	1.1	12	14
	(0.05, 1.6)	(0.4, 1.9)	(6)	(10)
Food Security z-Score	0.03	0.04	34	13
	(0.02, 0.04)	(0.03, 0.1)	(18)	(7)
Psychological Well-being z-Score	0.02	0.07	44	12
	(0.01, 0.04)	(0.04, 0.1)	(23)	(7)
Stock Outcomes				
Stock of Total Assets	20.2	7.9	51	6
	(12.6, 28.2)	(-25.2, 41.6)	(25)	(3)
Stock of Financial Assets	1.7	2.1	41	8
	(1, 2, 3)	(0.1, 4.2)	(20)	(4)
Height-for-Age z-Score	0.01	0.01	16	16
The fire to the fire of the fi	(0.001.0.018)	(-0.002, 0.015)	(8)	(10)
Weight for Age 7 Score	0.01	(-0.002, 0.013)	(8)	(10)
weight-for-Age z-Score	(0.002 0.012)	0.01	0 (4)	(())
	(-0.003, 0.013)	(-0.003, 0.021)	(4)	(0)
Panel B. Treatment Effect per Monthly Tranche Am	ount			
Flow Outcomes				
Monthly Household Consumption	35.9	99.0	64	18
	(22.9, 49.7)	(76.4, 121.9)	(34)	(11)
Monthly Household Food Consumption	22.0	52.8	33	16
	(11.6, 33.7)	(36.2, 70.8)	(22)	(9)
Monthly Income	17.1	77.1	76	12
	(10.6, 24.2)	(50.8, 103.9)	(33)	(5)
Hours Worked per Week	0.7	-2.7	24	1
ľ	(0.08, 1.3)	(-6.4, 1)	(12)	(1)
Labor Force Participation (percentage points)	12.5	20.1	9	8
	(-1, 1, 26, 4)	(4 8 35 9)	(6)	(5)
School Enrollment (percentage points)	13.3	15.4	12	14
School Enrollment (percentage points)	$(1 \ 1 \ 26 \ 5)$	(4 1 27)	(6)	(10)
Food Sometry 5 Serve	(1.1, 20.3)	(4.1, 27)	(0)	(10)
rood Security 2-Score	0.5	1.2	34	13
	(0.3, 0.7)	(0.8, 1.5)	(18)	(/)
Psychological Well-being z-Score	0.3	1.3	44	12
	(0.1, 0.5)	(0.8, 1.8)	(23)	(7)

 Table 8

 Heterogeneous Treatment Effects by Framing related to Child Development or Food Security

 (1)
 (2)
 (3)

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for stream transfers (and for this outcome, lump sum transfers are divided by number of months since the lump sum transfer in order to generate an effective monthly transfer amount). Our dataset for **Monthly Household Consumption** uses treatment effects on total consumption when reported; we use treatment effects on non-durable consumption or food consumption when total consumption is unavailable. Our analysis controls for whether food and durable goods are included in total consumption. Our dataset for **Monthly Income** uses reported treatment effects on total household or individual income when reported; if treatment effects are only reported by sub-category of income, e.g., wage earnings, non-farm enterprise profits, etc., then the sub-category with the highest control group mean is used instead. See Appendix Table D.1. for a comparison to analysis that only uses reported estimates on total household or individual income. We do not present results on Stunting due to data limitations. Effects with seven or fewer estimates have been grayed out.

Benefit-Cost Ratios of UCT Programs					
	(1)	(2)	(3)	(4)	
		_	Benefit-Cos	st Ratio (BCR)	
	Total	Total Transfer	No Admin.	Median Admin.	
	Benefit	Amount	Costs	Costs (24%)	
Panel A. Dynamic Effects Binary	Model				
Lump sum	4.1	1.0	4.1	3.3	
12-Month Stream Program	60.9	11.7	5.2	4.2	
24-Month Stream Program	66.2	22.9	2.9	2.3	
36-Month Stream Program	74.1	33.6	2.2	1.8	
48-Month Stream Program	81.6	43.7	1.9	1.5	
Panel B. Dynamic Effects Polyno	mial Model				
Lump sum	1.0	1.0	1.0	0.8	
12-Month Stream Program	13.0	11.7	1.1	0.9	
24-Month Stream Program	31.3	22.9	1.4	1.1	
36-Month Stream Program	52.7	33.6	1.6	1.3	
48-Month Stream Program	75.2	43.7	1.7	1.4	

Costs and benefits are presented as a proportion of the transfer amount (monthly tranche for stream and total amount for lump sum). Total cost and benefit are discounted to the month of program onset using a 5% discount rate. We use our estimated treatment effects on monthly household consumption from Table 6 to calculate the total benefit. In Panel A, we use our estimates from Panel A1 and B1 of Table 5, assuming that short-term effects are constant until month 18 and long-term effects are constant after month 18. In Panels B and C, we use our estimates from Panels A2 and B2 of Table 5. In Panel B, we assume our dynamic effects persist as predicted by our model until benefits dissipate to zero. 24% is the median administrative costs as a proportion of the transfer of the 10 of 73 programs that report costs. 24% is also the average administrative cost for all programs with a minumum of 6% and

maximum of 60%.

Table 9

Lump Sum Stream Lump Sum Stream 108 96 108 Psych. Well-being z-Score 96 Months Since First Transfer Months Since First Transfer Hours Worked per Week 84 84 72 72 09 09 48 48 30 30 24 24 2 \sim C C 0000000400-0 0000/004004 00000004004 00000004004 - ċ C Frequency Frequency Δ Т Lump Sum Stream Lump Sum Stream 08 08 96 96 Months Since First Transfer Months Since First Transfer Food Security z-Score 84 22 00 09 Monthly Income 48 48 30 38 24 24 0 C 0−0∞4∞0−0 0−0∞4∞0−0 50∞r∞r4ωu-0 00∞r0n4ωα-0 Frequency Frequency G C Monthly Household Food Cons. Lump Sum Lump Sum Stream Stream 108 84 96 108 12 24 36 48 60 72 84 96 Months Since First Transfer 84 96 Months Since First Transfer 72 School Enrollment 09 C C 00000004004 0000/00400-0 0000-004004 0000/00400/-0 ò ò Frequency Frequency മ ш Lump Sum Stream Lump Sum Stream 108 108 96 Monthly Household Cons. 96 Months Since First Transfer Months Since First Transfer Labor Force Participation 84 84 22 72 09 09 48 36 24 24 2 C −0∞∞∠∞∞4∞0−0 0000/00400/-00∞ron4ωu-0 00000004004 0 **Frequency** Frequency ∢ ш

Figure 2: Histograms of Months Since First Transfer by Outcome and Program Disbursement Schedules

Figure 2 (cont.): Histograms of Months Since First Transfer by Outcome and Program Disbursement Schedules

Figure 3.1: Posterior Average Treatment Effects on Total Consumption Sorted by Months Since First Transfer

Note: Vertical dotted lines indicate the average posterior ATE per disbursement schedule

Figure 3.2: Posterior Average Treatment Effects on Total Consumption Sorted by Monthly Tranche Amount

Note: Vertical dotted lines indicate the average posterior ATE per disbursement schedule

Citicy Vietnere Bield Star Book 057 Book 057	Months Since First Transfer	Monthly Tranche Amount		Posterior ATE per \$100 Monthly Tranche	
A per a con to Company of the second of t				Sorted by Treatment Effect Size	
Image 100 Image 100 Image 100	6	51	Nigeria Elderly UCT		
1 Maco the resonance 1 Maco the resonance <td>12</td> <td>17</td> <td>Rwanda GD1</td> <td></td> <td></td>	12	17	Rwanda GD1		
A Marked Company of the company o	14	63	Mexico Merida Pension		
North March M	23	24	Malawi GD		
n men to be a second of the se	23	48	Malawi GD		
Image: Access of the second	23	73	Malawi GD		
Record CD Magne End (CD Magne End	12	111	Rwanda GD1		
sand to 00 Mage Berly GT Upper Nage Entry GT Upp	20 12	29 16	l iberia IPA		
Ngra Boy UT Ugath May Berging Ugath May Berging	12	17	Rwanda GD1		
Light Ville Thermiter of the second s	12	51	Nigeria Elderly UCT		
The second seco	21	11	Uganda Village Enterprises		
Si Epril Similar Si King & Go 2 Si Epril Si Si Epril Si Si Epril Si Si Epril Si Epril Si Epril Si </td <td>10</td> <td>54 102</td> <td>Vganda PRIDE</td> <td></td> <td></td>	10	54 102	Vganda PRIDE		
1 30 Key 10 C2 4 Key 10 C2 2 Key 10 C2 4 Key 10 C2 4 3 Key 10 C2 4 4 3 Santa EC2 4 4 4 Key 10 C2 4 4 5 Key 10 C2 4 5 Key 10 C2 4 4 6 Key 10 C2 4 4 6 Key 10 C2 4 4 6 Key 10 C2 4 4 7 S Key 10 C2 7 S <td>16</td> <td>51</td> <td>Eavpt Sawiris</td> <td></td> <td></td>	16	51	Eavpt Sawiris		
2 66 Mage Broke 2 14 Mask Chill 2 Mask Chill 3 2 4 Mask Chill 5 Mask Chill 6 Mask Chill 6 Mask Chill 7 Mask Chill 7 Mask Chill 8 Mask Chill 9 Mask Chill 10 Mask Chill 11 Mask Chill 12 Mask Chill 13 Mask Chill 14 Mask Chill 15 Mask Chill 16 Mask Chill 17 Mask Chill 18 Mask Chill <td< td=""><td>19</td><td>90</td><td>Kenya GD 2</td><td></td><td></td></td<>	19	90	Kenya GD 2		
iiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiii	2	46	Kenya Brooks		
Image Series (CP) Image Series (CP) Image Series (CP)	12	109	South Sudan BRAC		
1 Name CD2 2 Works ED2 3 Works ED2 4 Works ED2 5 Works ED2 5 W	24	21	Malawi Zomba CTP		
14 Renda GG2 23 Urgan Single 24 Urgan Single 25 Level 60 21 Level 60 22 Level 60 23 Urgan Single 24 Maximum 25 Level 60 26 Level 60 27 Level 60 28 Trecan Scal Acta Fund 29 Renda GD2 20 Level 60 21 Level 60 22 Level 60 23 Level 60 24 Maximum 25 Renda GD2 26 Maximum 27 Renda GD2 28 Renda GD2 29 Renda GD2 20 Maximum 21 Level 60 22 Renda GD2 23 Renda GD2 24 Maximum 25 Renda GD2 26 Renda GD2 27 New GD2 28 Renda GD2 29 Renda GD2 20 Renda GD2 21 Renda GD2 22 Level 60 23 Renda GD2 24 Renda GD2 <	14	90	Rwanda GD2		
23 Margin Phy	14	134	Rwanda GD2		
4 Upper Price 5 Upper Price 6 Cara Action 10 Epin Same 11 Same 12 Upper Price 13 Upper Price 14 Same 15 Same 16 Same 17 Same 18 Same 19 Karp Col 10 Karp Col 11 Karp Col 12 Same Fride 13 Karp Col 14 Karp Col 15 Same Fride 16 Same Fride 17 Same Fride 18 Same Fride 19 Karp Col 10 Karp Col 11 Same Fride 12 Same Fride 13 Karp Col 14 Toward Scole 15 Same Fride 16 Same Fride 17 Same Fride 18 Same Fride 19 Same Fride 10 Same Fride 11 Same Fride 12 Same Fride 13 Karp Col 14 Same Fride <tr< td=""><td>11</td><td>27</td><td>Kenya IPA</td><td></td><td></td></tr<>	11	27	Kenya IPA		
1 1 <td>24</td> <td>22</td> <td>Uganda PRIDE</td> <td></td> <td></td>	24	22	Uganda PRIDE		
2 1 Livie GO 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	24	16	Ghana Karlan		
16 51 Egypt Samie Uprach 0/2 10 30 10 31 10 32 10 Main M/SSM 21 10 10 Main M/SSM 22 63 11 10 12 10 14 73 15 10 16 10 17 10 18 10 19 Main M/SSM 14 73 15 10 16 10 17 10 18 10 19 Main M/SSM 10 10 11 10 12 10 13 10 14 73 15 10 16 10 17 10 18 10 19 10 10 10 11 10 12 10 13 10 14 17 15 10 16 10 17 10 18 10 19 10	20	21	Liberia GD		
108 8 Therata Solid Acc Field Image Solid Acc Field Image Solid Acc Field 101 10 Walk MSSM Image Solid Acc Field Image Solid Acc Field 101 10 Walk MSSM Image Solid Acc Field Image Solid Acc Field 101 10 Walk MSSM Image Solid Acc Field Image Solid Acc Field 101 10 Walk MSSM Image Solid Acc Field Image Solid Acc Field 101 10 Market G2 Image Solid Acc Field Image Solid Acc Field 101 10 Market G2 Image Solid Acc Field Image Solid Acc Field 101 10 Market G2 Image Solid Acc Field Image Solid Acc Field 101 10 Market G2 Image Solid Acc Field Image Solid Acc Field 101 10 Market G2 Image Solid Acc Field	16	51	Egypt Sawiris		
a dicital solar	108	8	Uganda YOP		
1 1 <td>10</td> <td>33 42</td> <td>Tanzania Social Action Fund Liberia GD</td> <td></td> <td></td>	10	33 42	Tanzania Social Action Fund Liberia GD		
24 3 Lbbris CD	20	10	Malawi NASFAM		
24 33 Lesdb C CP Category 14 57 Rends GD2 Imp Sum 14 77 Rends GD2 Imp Sum 14 78 Rends GD2 Imp Sum 15 Grant R 2 Imp Sum Stream Ended 16 Rends GD1 Imp Sum Imp Sum 17 Name GD1 Imp Sum Imp Sum 18 0 Rends GD1 Imp Sum 19 10 Rends GD1 Imp Sum 20 Maan NSH Imp Sum Imp Sum 21 10 Rends GD1 Imp Sum 22 23 Rends GD1 Imp Sum 23 24 Maan NSH Imp Sum 24 17 Name GD1 Imp Sum 25 10 Rends GD1 Imp Sum 24 <td>20</td> <td>63</td> <td>Liberia GD</td> <td></td> <td></td>	20	63	Liberia GD		
1 32 Marga Colo	24	53	Lesotho CGP		
1 0 Winn GD 1 Image Control Image	1	52 57	Kenya GD 1 Pwanda GD2		
11 66 67 Varia Bista	36	40	e Kenva GD 1		cotogory
24 22 Ž Ugnia PRDE • Lorp Sun 14 23 • Brand GOD Napal GoD Napal GoD Ghanal Ry 2 • Ghanal GOD • Ghanal Ry 2 • Gha	14	68	Kenya Busara		calegoly
14 13 Example for the second	24	22	Z Uganda PRIDE		Lump Sum
10 23 0 Mala 10/2 • Stream Ended 11 23 0 Mala 2ma 0.170 • Stream Ended 11 23 0 Mala 2ma 0.170 • Stream Ended 11 23 0 Mala 2ma 0.170 • Stream Ended 11 24 0 Mala 2ma 0.170 • Stream Ended 28 11 34 Mala Mark 100 • Stream 1.170 29 24 Mala MSTM • Stream 1.170 • Stream 1.170 200 23 Upand Group Tenty 100 • Stream 1.170 • Stream 1.170 201 23 Mala MSTM • • • • • • • • • • • • • • • • • • •	14	73	E Rwanda GD2		
12 13 0 Malanii Zomis (CP) • Steen in Progress 11 34 4 4 4 13 10 Keng GD 1 • Steen in Progress 14 14 14 14 14 15 10 Keng GD 1 • Steen in Progress 16 10 Libria GD • Steen in Progress 17 Libria GD • Steen in Progress 18 10 Libria GD • Steen in Progress 19 24 Malani MSTM • Steen in Progress 11 10 Uigonda Ge/OP • Steen in Progress 12 20 Uigonda Ge/OP • • • • • • • • • • • • • • • • • • •	4	23 27	C Ghana IPA 2		+ Stream Ended
4 24 24 24 24 24 11 34 6 Keng GD1 1 1 36 10 Keng GD1 1 1 36 10 Lbrin GD 1 1 37 10 Lbrin GD 1 1 38 10 Keng GD1 1 1 39 24 Malan MSFM 1 1 30 12 Upanda GweDrenty 2 1 1 30 12 10 Upanda GWeDrenty 2 1 30 12 10 Nigeria Sare he Ohiding 1 31 Nigeria Sare he Ohiding 1 1 32 10 Nigeria Sare he Ohiding 1 34 14 Nigeria Sare he Ohiding 1 35 10 Keng GD1 1 36 10 Keng GD1 1 37 11 1 1 1 38 10 Keng GD1 1 1 39 14 1 1 1 30 13 1 1 1 31 14 10 1 1 32 10 10 1	12	43	Malawi Zomba CTP		Stroom in Drogroce
11 34 Kenya GD 1 20 21 Liberia GD 20 42 Liberia GD 20 120 Ugarda Go CevDirectly 2 20 120 Ugarda Go CevDirectly 2 20 120 Ugarda Go CevDirectly 2 21 20 120 22 120 Ugarda Go CevDirectly 2 23 Turisia Gov	4	24	Bangladesh Pulse		- Siledin in Flogless
88 10 Marging Cu1 21 Liberia GD 20 24 10 Uganda GwaTevity 2 20 10 20 10 12 10 20 10 21 Liberia GD 22 10 23 Control GwaTevity 2 24 Malawi MASFAM 25 10 26 10 27 23 28 10 29 10 29 10 20 Nigeria Save the Children 21 11 22 11 23 10 24 11 25 10 26 10 27 10 28 10 29 10 20 10 21 11 21 11 22 11 23 11 24 11 25 10 26 10 27 10 28 10 29 Nigeria Save the Children 21 10 21 10	11	34	Kenya GD 1		
20 42 Milani Korp 9 24 Milani Korp 20 120 Ugand GiveOnethy 21 20 63 22 63 Liberia Go 23 Same he Children	30 20	10	Liberia GD		
9 24 Malani WSFAM 20 100 Ugarda Gire/Dreaty 2 21 20 Nigeria Sare the Children 22 23 Nigeria Sare the Children 24 17 Nigeria Sare the Children 25 23 Nigeria Sare the Children 24 17 Nigeria Sare the Children 24 41 Nigeria Gare the Children 24 41 Malani SCTP 25 24 Ugarda Bjorvan 26 Ghara IFA 2 27 28 Ugarda Bjorvan 28 9 Nigeria Sare the Children 29 Nigeria Sare the Children	20	42	Liberia GD		
20 120 Uganda Gine/Directly 2 20 63 Libris G D 12 20 Nigaria Sane the Children 12 20 Nigaria Sane the Children 24 17 Nigaria Sane the Children 24 17 Nigaria Sane the Children 24 17 Nigaria Sane the Children 24 18 142 18 142 Uganda Gio Children 18 142 Uganda Gio Children 11 21 India Gio Children 12 14 Malia PR 13 142 Uganda Bjornah 14 24 Uganda Diorah 15 24 Uganda Diorah 16 Malain SCIP	9	24	Malawi NASFAM		
20 63 Lberia GD 27 23 Tunisa Gw 28 17 Nigeria Save the Children 28 10 Kenng GD 1 28 11 Niger Gw CT 29 12 14 Niger Gw CT 12 11 Mail IPA	20	120	Uganda GiveDirectly 2		
12 20 Indjerie Save the Children 24 17 Nigerie Save the Children 36 10 Keyna GD 1 24 41 Nigerie Save the Children 24 41 Nigerie Save the Children 24 41 Nigerie Save the Children 12 11 Mail IPA 12 11 Mail IPA 12 12 Mail IPA 13 14.2 Uganda GD 14 12 Malawi SCTP 15 24 Uganda Brovaln 16 Malawi SCTP 17 Qanda Brovaln 18 19 Myarnar Save the Children 19 Myarnar Save the Children 10 27 Granta IPA 2 24 14 Mail PFS 24 19 Togo Gov CT 24 19 Togo Gov CT 24 19 Nigerie Save the Children 12 23 Kenya HSNP 12 24 India Genzopachyay 12 29 Kenya HSNP	20	63	Liberia GD		
24 17 Nigeria Save the Children 36 10 Kenya GD 1 18 142 Uganda GD 11 24 11 12 11 Mail IPA 11 21 Mail CPA 12 11 Mail PA 11 21 Mail CPA 12 12 Uganda Bjonath 12 24 Uganda Bjonath 13 12 16 14 Mailor Children 15 23 16 Makaio SCTP 17 Ghana IPA 2 18 9 19 Myanmar Seve The Children 12 23 13 Uganda VPP 24 14 19 Nigeria Save The Children 12 23 11 fuñda Gregoradhay 13 12 13 14 Mail PFS 24 19 Togo Gov CT 23 21 India Gregoradhay 14 68 Repusel Sava 17	27	20	Tunisia Gov		
36 10 Kenya GD 1 24 41 Niger Gov CT 11 11 Mail IPA 12 11 Mail IPA 12 11 India GiveDirectly 12 24 Uganda Bovain 12 24 Uganda Bovain 13 Quanda Bovain Imail IPA 14 Waama Save the Children Imail IPA 15 Quanda Bovain Imail IPA 16 Malawi SCTP Imail IPA 17 Gharal IPA 2 Imail IPA 23 Mexico PAL Imail IPA 30 19 Myarma Save the Children 12 23 Mexico PAL 48 19 Uganda YOP 24 14 Mail PFS 24 19 Togo Gov CT 24 19 Togo Gov CT 23 Pariaguay IPA Imail GiveDirectly 24 19 Nigeria Save the Children 23 21 India Gaogogadhyay 24 24 Save the Children 25	24	17	Nigeria Save the Children		
24 41 Niger Gor C1 12 11 Maii IPA 12 11 Maii IPA 11 21 India GiveDirectly 12 16 Malawi SCTP 12 24 Uganda Bjorxin 12 24 Uganda Bjorxin 12 24 Uganda Bjorxin 12 24 Uganda CD 13 Myamar Save the Children 14 Maii PFS 15 10 24 14 19 Wjarnar Save the Children 12 23 24 14 15 10 26 10 27 Gran IPA 2 28 9 9 Nigeria Save the Children 12 23 13 Maii PFS 14 Maii PFS 24 14 12 10 23 11/16 GirveDirectly 24 14 25 10 26 10/16 GirveDirectly 27 10/16 GirveDirectly 28 10/16 GirveDirectly 29 Kernya HSNP 21 20 22 10 </td <td>36</td> <td>10</td> <td>Kenya GD 1</td> <td></td> <td></td>	36	10	Kenya GD 1		
1 1 Mail IPA 11 India GiveDirectly 12 16 13 Malawi SCTP 14 Uganda Bjorxatn 15 Chana IPA 2 16 Malawi SCTP 17 Chana IPA 2 18 9 19 Myanmar Save the Children 12 23 19 Myanmar Save the Children 10 27 23 Mexico PAL 48 19 19 Togo Gov CT 24 19 24 19 24 19 24 19 25 1 26 1 21 Canopoadryay 22 1 23 India GiveDirectly 24 19 25 1 26 1 27 Paraguay IPA 28 1 29 Kenya HSNP 20 Kenya HSNP 21 India GiveDirectly 22 10 23 10 24 19 29 Kenya HSNP 20 Kenya HSNP 21 Za	24	41	Niger Gov CT		
1 21 India GiveDirectly 12 16 Malawi SCTP 12 24 Ugarda Bjorath 10 27 Ghana IPA 2 30 19 Myanmar Save the Children 12 23 Mexico PAL 14 Main PFS India Gangopathya 14 Mai PFS India Gangopathya 15 10 10 16 Migeria Save the Children 17 Paraguay IPA 18 10 19 Nigeria Gave the Children 10 27 11 10 12 10 13 10 angopathya 14 68 14 68 15 10 16 Maiwi SCTP 17 Paraguay IPA 18 10 19 Nigeria Save the Children 11 10 12 10 13 10 14 68 15 10 16 Maiwi SCTP 17 Paraguay IPA 18 10 19 Nigeria Save the Children 10 10 12 10 <td>18</td> <td>142</td> <td>Uganda GD Mali IPA</td> <td></td> <td></td>	18	142	Uganda GD Mali IPA		
12 16 Malawi SCTP 12 24 Uganda Bjovatin 10 27 Ghan IPA 2 30 19 Myanmar Save the Children 12 23 Mexico PAL 14 Maila PFS	11	21	India GiveDirectly		
12 24 Uganda Bjorvaln 10 27 Ghana IPA 2 30 19 Myanmar Save the Children 12 23 Mexico PAL 48 9 Nigeria Save the Children 48 19 Uganda VOP 24 14 Mali PFS 24 19 Togo Gov CT 24 19 Togo Gov CT 24 19 Togo Gov CT 24 14 Mali PFS 23 1ndia Gangopadhyay 12 63 India Gangopadhyay 13 India Gangopadhyay 14 68 Kenya HSNP 15 India Gangopadhyay 16 Kenya HSNP 17 Paraguay IPA 12 177 Paraguay IPA 13 Nigeria Save Hoc Fhildren 24 19 Nigeria Save Hoc Politor 24 19 Nigeria Save Hoc Politor 24 21 Zambia CGP 24 21 Zambia MCP 24 16 Malawi SCTP	12	16	Malawi SCTP		
10 2/ Grana IPA 2 30 19 Myanma Save the Children 12 23 Mexico PAL 48 9 Nigeria Save the Children 48 19 Uganda VOP 24 14 Maii PFS 24 14 Maii PFS 24 14 Maii PFS 24 14 Kerya HSNP 12 63 India Gangopadhyay 13 68 Kerya HSNP 14 68 Kerya HSNP 12 177 Paraguay IPA 12 177 Paraguay IPA 14 68 Kerya HSNP 24 19 Nigeria Save the Children 24 19 Nigeria Save the Children 24 21 Zambia CGP 24 21 Zambia MCP 24 16 Malawi SCTP	12	24	Uganda Bjorvatn		
30 13 Implained Gard net Children 48 9 Nigeria Save the Children 48 19 Uganda YOP 24 14 Maizi PES 24 19 Togo Gov CT 24 34 Kenya HSNP 12 63 India Gangopadhyay 13 India GiveDirectly 14 68 15 Kenya HSNP 16 Kenya HSNP 17 Paraguay IPA 18 Nigeria Save the Children 24 19 Nigeria Garden 12 29 Kenya HSNP 14 68 Kenya HSNP 12 29 Kenya HSNP 24 19 Nigeria Save the Children 24 21 Zambia GCP 24 21 Zambia GCP 24 21 Zambia GCP 24 16 Malawi SCTP	10	2/	Ghana IPA 2		
48 9 Nigeria Save the Children 48 19 Uganda VOP 24 14 Mali PFS 24 19 Togo Gov CT 24 34 Kenya HSNP 12 63 India Gangopadhyay 23 21 India Give Directly 14 68 Kenya Busara 12 29 Kenya HSNP 14 68 Kenya HSNP 12 29 Kenya HSNP 14 68 Kenya HSNP 12 29 Kenya HSNP 14 68 Kenya Gov CT 15 29 Kenya HSNP 16 Malawi GCP 24 21 Zambia GCP 24 21 Zambia GCP 24 21 Zambia GCP 24 16 Malawi SCTP	12	23	Mexico PAI		
48 19 Uganda VOP 24 14 Mail PFS 24 19 Togo Gov CT 24 34 Kenya HSNP 12 63 India Gangopadhyay 23 21 India GweDirectly 14 68 Kenya Busara 12 29 Kenya HSNP 14 68 Kenya Busara 12 29 Kenya HSNP 14 68 Kenya Busara 15 177 Paraguay IPA 16 Kenya Gov 100	48	9	Nigeria Save the Children		
24 14 Mail PFS 24 19 Togo Gov CT 24 34 Kenya HSNP 12 63 India Gangpadhyay 23 21 India GiveDirectly 14 68 Kenya Busara 12 177 Paraguay IPA 14 68 Kenya HSNP 12 177 Paraguay IPA 12 29 Kenya HSNP 24 19 Nigeria Save the Childran 36 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia CGP 24 16 Malawi SCTP	48	19	Uganda YOP		
24 19 10g0 GOV C1 24 34 Kerya HSNP 12 63 India Gangopadhyay 23 21 India GiveDirectity 14 68 Kerya Busara 12 177 Paraguay IPA 12 29 Kerya HSNP 24 19 Nigeria Save the Children 36 21 Zambia CGP 24 21 Zambia MCP 24 21 Zambia MCP 24 16 Malawi SCTP	24	14	Mali PFS		
24 34 India Gangopadhyay 12 63 India Gangopadhyay 13 23 21 14 68 Kenya Busara 12 177 Paraguay IPA 12 29 Kenya HSNP 24 19 Nigeria Save the Children 24 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia MCP 24 21 Zambia MCP 24 14 Uganda WFP 24 16 Malawi SCTP	24	19	IOGO GOV CI		
23 21 India GiveDirectly 14 68 Kenya Busara 12 177 Paraguay IPA 12 29 Kenya HSNP 24 19 Nigeria Save the Children 36 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia MCP 12 14 Uganda WFP 24 16 Malawi SCTP	12	63	India Gangopadhyay		
14 68 Kenya Busara 12 177 Paraguay IPA 12 29 Kenya HSNP 24 19 Nigeria Save the Children 36 21 Zambia CGP 24 21 Zambia CGP 36 21 Zambia CGP 24 16 Malawi SCTP	23	21	India GiveDirectly		
12 177 Praguay IPA 12 29 Kenya HSNP 24 19 Nigeria Save the Chifen 36 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia CGP 36 21 Zambia CGP 24 16 Malawi SCTP	14	68	Kenya Busara		
12 23 Deliver in Sive 24 19 Nigeria Save the Children 36 21 Zambia CGP 24 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia MCP 36 21 Zambia MCP 12 14 Uganda WFP 24 16 Malawi SCTP	12	177	Paraguay IPA		
36 21 Zambia CGP 24 21 Zambia CGP 24 21 Zambia CGP 36 21 Zambia CGP 36 21 Zambia MCP 36 21 Zambia MCP 12 14 Uganda WFP 24 16 Malawi SCTP	24	29 10	Nenya Hone Nigeria Save the Children		
24 21 Zambia MCP 24 21 Zambia CGP 36 21 Zambia MCP 12 14 Uganda WFP 24 16 Malawi SCTP	36	21	Zambia CGP		
24 21 Zambia CGP 36 21 Zambia MCP 12 14 Uganda WFP 24 16 Malawi SCTP	24	21	Zambia MCP		
JD ZI Zamula MUP 12 14 Uganda WFP 24 16	24	21	Zambia CGP		
16 Malawi SCTP	30 12	21	Zambia MCP		
	24	16	Malawi SCTP		
		••			

Figure 3.3: Posterior Average Treatment Effects on Total Consumption Sorted by Effect Size

Note: Vertical dotted lines indicate the average posterior ATE per disbursement schedule

6 Appendix

6.1 Study search

We develop a initial sample by collecting studies from two secondary sources: the GiveDirectly Cash Evidence Explorer and the Overseas Development Institute's 2016 report "Cash transfers: what does the evidence say?" (*Cash Evidence Explorer* 2023; Bastagli et al. 2016). We also use the publicly available data from three existing meta-analyses on cash transfers: Kondylis and Loeser 2021; Manley, Alderman, et al. 2022, and McGuire et al. 2022. From these sources, we identify 47 studies.

After building this initial sample, we conduct searches on Google Scholar, EconLit, and the AEA RCT Registry with the following search terms:

Database	Search terms	Search settings	Number of
			results
Google	(randomized, OR evaluation, OR	n/a	4,797
Scholar	experiment) AND unconditional AND		
	("cash transfer", OR "cash grant"),		
	("randomized control trial" OR		
	"randomized controlled trial" OR		
	"randomized experiment") AND		
	unconditional AND ("cash transfer" OR		
	"cash grant" OR "non-contributory		
	pensions")		
EconLit	(unconditional AND cash) OR "cash grant"	Apply related words,	1,297
	OR "capital grant" OR "cash transfer"	also search with the	
		full text of the	
		articles, apply	
		equivalent subjects	
AEA RCT	"cash grant" OR "cash transfer"	Search within abstract	210
Registry			

6.2 Data selection and harmonization

This section outlines how we extract estimates from the papers in our sample and then convert them to as comparable units as possible before running our Bayesian meta-analysis.

Regression specification:

We apply the following set of rules to decide which treatment effects to extract from papers:

- Sometimes papers pool results across different UCT treatment arms (that vary either by disbursement schedule or transfer amount). When multiple regression specifications are reported, we prefer estimates with more disaggregation by treatment arm.
- 2. When impacts are measured across multiple rounds of data collection, we prefer estimates from regressions with more disaggregated effects by survey round.
- 3. Except for the two rules above, we prefer estimates from the simplest regression specification (i.e., the regression specification that is closest to a simple mean comparison). In practice, this means:
 - (a) We prefer estimates from regressions with fewer controls (except for treatment arm indicators, survey round indicators, and stratification indicators).
 - (b) We prefer estimates from regressions on untransformed outcome variables over log, inverse hyperbolix sine, or other transformations.
- 4. When both intent-to-treat (ITT) and treatment-on-the-treated (TOT) impacts are reported, we prefer ITT estimates.²²
- 5. We exclude treatment effects reported as odds ratios.

 $^{^{22}\}mathrm{No}$ TOT effects are included in our analysis.

Outcome selection

Consumption: We extract treatment effect estimates on total consumption. If total household consumption is not reported, we extract the reported category of consumption with the largest control group mean, typically non-durable or food consumption. Estimates on food consumption are also extracted as a primary outcome.

Food security: If a paper reports multiple outcomes on food security, we select only one outcome for inclusion in our analysis. We prioritize outcome selection in the following order: international food security scores and indexes (e.g., HFIAS, HHS, etc.), paperspecific food security indexes, hunger indicators, and finally meal frequency indicators.

Stock of total assets: When total Assets is not reported, we use either productive/business assets or consumption/household/durable assets instead. If both productive assets and consumption assets are reported, we use whichever has the bigger control group mean as the substitute for total assets. Productive assets, consumption assets, and financial assets are also extracted as secondary outcomes.

Stock of financial assets: Stock of financial savings of the household.

Monthly Income: When total income is not reported but some sub-category of total income (e.g., wage earnings, business profits, etc.) is reported, we use the sub-category with the largest control group mean as the preferred treatment effect for total income. Wage earnings, non-farm enterprise profits, agricultural enterprise profits, all household enterprise profits, and enterprise revenues are also extracted as secondary outcomes.

Hours worked per week: We extract estimates on the number of hours worked per a unit of time, typically a week.

Labor force participation: We extract treatment effects on binary variables of whether the respondent participated in any economic activity over a given period of time, typically a month. In other words, we're looking for estimates on whether participants engaged in any income-generating activity, whether self-employment or working for wage, salary, or commission. As secondary outcomes, we also extract binary variables on whether the participant engaged in any non-farm self-employment, farm self-employment, or (non-self) employment.

School enrollment: We extract treatment effects on binary variables on whether the survey respondent (or their child) is enrolled in school. If such a variable is unavailable, we instead use estimates on the proportion of children in the household enrolled in school.

Anthropometrics: We extract treatment effects on height-for-age and weight-for-age z-scores as well as stunting. Stunting is not reported enough for much of our analysis, but we do report the main results for average treatment effects (i.e., not disaggregated by distribution type or other design features).

Psychological well-being: If a paper reports multiple outcomes on psychological wellbeing, we select only one outcome for inclusion in our analysis. We prioritize outcome selection in the following order: standard psychological well-being scores or indexes (e.g., GHQ-12, WVS Life Satisfaction Scale, WHO Quality of Life Scale, etc.), standard mental health/depression scores or indexes (e.g., CES-D, PSS, GDS, etc.), paper-specific psychological well-being score or index, psychological well-being indicators, and mental health/depression indicators.

Data harmonization

Monetary units conversion: We convert all monetary units to 2010 USD PPP using the following rules:

- 1. If an amount is reported in USD PPP, we simply convert it to 2010 price levels using USD inflation.
- 2. If an amount is reported in local currency units (LCU), we convert it to USD PPP

using the contemporary World Bank PPP Conversion Factor (PPP CF) and then to 2010 price levels using USD inflation.

3. If an amount is reported in nominal USD, we convert it to LCU using the contemporary nominal USD exchange rate, then to USD PPP using the contemporary PPP CF, and finally to 2010 price levels using USD inflation.²³

Unit transformations: Recall that we prioritize extracting estimated treatment effects from regressions on untransformed outcome variables. When estimates are only reported on transformed outcome variables, we use the following calculations to account for the transformation.

- 1. Percent change: We multiplied the estimate by the counterfactual mean (typically the control group mean at endline).
- 2. Inverse hyperbolic sine: Same as percent change.
- 3. Log: For an estimate β , we multiplied $(e^{\beta} 1)$ by the control group mean.

Monthly household consumption conversions: Treatment effects on consumption vary widely in their reporting across papers. We convert all reported treatment effects to monthly household consumption using the following calculations.

- If consumption is reported over 1 week or 2 weeks, we multiply the treatment effect by 4.3 or 2.15 respectively. If consumption is reported annually, we divide the treatment effect by 12.
- 2. If consumption is reported on a per capita basis, we multiply the treatment effect by the average household size as reported in the balance table. If household size is

 $^{^{23}}$ We do not follow this approach for the two programs in our sample that take place in Liberia, because the World Bank PPP Conversion Factor applies USD, which is legal tender in Liberia. We thus convert nominal USD directly to USD PPP before adjusting for USD inflation.

not reported, we assume it is equal to 5.6 for the calculation, the mean household size in the sample.

3. If consumption is reported on a per adult equivalent basis, we multiply the treatment effect by the average number of adult equivalents per household. If this number is not reported, we use the household size as reported in the balance table to estimate the number of adult equivalents in the household. To make this calculation, we count the first member of the household as 1 adult equivalent, the second member of the household as 0.7 adult equivalents, and all subsequent household members as 0.5 adult equivalents. For example, we estimate a household of 5 to contain 3.2 adult equivalents. If household size is not reported, we assume there are 3.5 adult equivalents per household (i.e. we assume the household size is 5.6).

Food security standardization: We standardize all food security treatment effects by dividing by the control mean standard deviation if necessary. See Appendix Table B.1 for the unstandardized treatment effects.

Assets conversions: Total assets is stock, rather than flow variable, so no further conversion is necessary after converting to common monetary units. We do the same for secondary assets outcomes: productive assets, consumption assets, and financial savings.

Monthly income conversion: We convert all reported treatment effects on income to monthly income using the same methods as points 1 and 2 under Consumption Conversion. Note that unlike for consumption, we do not convert to the household level. Papers vary in their reporting of treatment effects on income at the individual or household level. Rather than trying to adjust for this discrepancy across papers, we assume researchers only measured income at the individual level if they had good reason to expect the impact of the treatment would be almost entirely at the individual, not household, level. We follow the same approach for sub-categories of income.

Hours worked per week conversion: If total hours worked is reported per month, we

divide the treatment effect by 4.3.

Labor force participation conversion: We convert proportions to percentage points by multiply by 100, if necessary.

School enrollment conversion: We extract two types of education outcomes: a binary indicator of whether a given student is enrolled in school or continuous 0-1 variable of the proportion of children enrolled in school in a given household. We treat these different measures as equivalent. When necessary we convert proportions to percentage points by multiplying by 100.

Anthropometrics conversion: We extract treatment effects on height-for-age (HAZ) and weight-for-age z-scores (WAZ), which have equivalent units by construction. No conversion is necessary. Similarly, papers that report stunting use a standard definition. We merely scale from proportions to percentage point units when necessary.

Psychological well-being standardization: We standardize all psychological well-being treatment effects by dividing by the control group mean standard deviation if necessary. See Appendix Table B.2 for the unstandardized treatment effects.

				Appendix Ta	ble A.1a			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
Program ID	Papers	Country	Program Purpose	Implementer Type	Program/Implementer Name	Delivery Method	Framing/Labeling	Transfer Type
1	Kashefi and Naito (2023)	Afganistan	Development	Government		Bank Transfer	Business development	Lump Sum
2	Ahmed et al. (2019), Ahmed et al. (2021), Tauseef (2021)	Bangladesh	Development	NGO		Physical Cash		Stream - Ongoing
3	Hossain et al. (2022)	Bangladesh	Development	Government		Mobile money	Health, Child development	Lump Sum
4	Hussam et al. (2021)	Bangladesh	Humanitarian (refugees)	NGO	Pulse	Physical cash		Stream - Completed
5	Undurraga et al. (2016)	Bolivia	Development	Researchers		Physical cash (in-kind)	1. E	Lump Sum
6	Grimm et al. (2021)	Burkina Faso	Development	NGO	Innovations for Poverty Action (IPA)	Bank Transfer	Micro-enterprise growth	Lump Sum
0	Almosh et al. (2017), Houngbe et al. (2018)	Burkina Faso	Development	Gouernment	MamOut Nahouri CTTP	Devraiced each	Child development	Stream - Ongoing
9	Londoño-Vélez and Querubin (2022)	Colombia	Humanitarian (COVID)	Government	Compensación del IVA	Mobile money	COVID-19 emergency aid	Stream - Completed
10	Londono-Verez and Querubin (2022)	Congo Dem Ren	Development	NGO	Give Directly	Mobile money	COVID-19 energency and	Stream - Completed
11	Grellety et al.	Congo, Dem. Rep.	Development	Researchers	Sive Directly	Physical cash		Stream - Ongoing
12	4 papers, see notes	Ecuador	Development	Government	Bono de Desarrollo Humano (BDH)	Bank transfer	Education, Child dev.	Stream - Ongoing
13	Crépon et al. (2023)	Egypt	Development	NGO	Sawiris Foundation	Bank Transfer	Micro-enterprise growth	Lump Sum
14	Karlan et al. (2015), Fafchamps et al. (2014)	Ghana	Development	NGO	IPA	Physical cash	Micro-enterprise growth	Lump Sum
15	Fafchamps et al. (2014)	Ghana	Development	NGO	IPA	Bank Transfer		Lump Sum
16	Karlan et al. (2014)	Ghana	Development	NGO	IPA	Physical cash	Farm investment	Lump Sum
17	Gangopadhyay et al (2014)	India	Development	Researchers		Bank transfer		Stream - Ongoing
18	Weaver et al. (2023)	India	Development	NGO	Give Directly	Bank transfer	Child development	Stream - Ongoing/Completed
19	Hussam et al (2022)	India	Development	Researchers		Bank transfer	Micro-enterprise growth	Lump Sum
20	McKelway et al. (2023)	India	Development	Researchers		Physical cash		Lump Sum
21	Acampora et al. (2022)	Kenya	Development	Researchers		Mobile money		Stream (Annual)
22	Brooks et al. (2022)	Kenya	Humanitarian (COVID)	Researchers		Mobile money		Lump Sum
23	Haushofer et al. (2021)	Kenya	Development	Researchers		Mobile money	C1 11 1	Lump Sum, Stream
24	4 papers, see notes	Kenya	Development	Government	Kenya CI-OVC	Bank transfer	Child support	Stream - Ongoing
25	Haushofer and Shapiro (2016, 2018), Bhargava (2019)	Kenya	Development	NGO	Give Directly	Mobile money		Lump Sum, Stream
20	Egger et al. (2020)	Kenya	Humanitarian (COVID)	NGO	Give Directly	Mobile money		Lump Sum Streem
28	Orkin et al. (2020)	Kenya	Development	NGO	Give Directly	Mobile money		Lump Sum
20	Merttens et al. (2013). Dietrict and Schmerzeck (2019)	Kenya	Development	Government	Kenva HSNP	Bank transfer	Food security	Stream - Ongoing
30	Haushofer et al. (2020)	Kenya	Development	NGO	IPA	Mobile money	1 oou becanty	Lump Sum
31	Brudevold-Newman et al. (2017)	Kenya	Development	NGO	International Rescue Committee (IRC)	Phys. cash, mobile money		Lump Sum
32	Maluccio et al. (2023)	Kenya	Development	Researchers		Bank Transfer	Education	Lump Sum
33	3 papers, see notes	Lesotho	Development	Government	Lesotho Child Grant Program (CGP)	Physical cash	Child support	Stream - Ongoing/Completed
34	Aggarwal et al. (2022)	Liberia	Development	NGO	Give Directly	Mobile money		Lump Sum, Stream
35	Blattman et al. (2017)	Liberia	Development	NGO	Global Communities	Physical cash		Lump Sum
36	Datta et al. (2021)	Madagascar	Humanitarian (COVID)	NGO	World Bank + UNICEF	Physical Cash	Child development	Stream - Ongoing
37	Aggarwal et al. (2022)	Malawi	Development	NGO	Give Directly	Mobile money		Lump Sum
38	Ambler et al. (2018, 2020), Ambler et al. (2018b)	Malawi	Development	NGO	NASFAM	Physical Cash	Agriculture	Lump Sum
39	5 papers, see notes	Malawi	Development	Government	Malawi SCTP	Physical cash	Education, Food security	Stream - Ongoing
40	5 papers, see notes	Malawi	Development	NGO	Zomba CTP	Physical cash		Stream - Ongoing/Completed
41	Beaman et al. (2023)	Mali	Development	NGO	IPA Des recentes de Filste Conicere	Bank Transfer	Lindhards Eds. Child day	Lump Sum
42	A suite st st (analissiness)	Man	Development	Government	Programme de Filets Sociaux	Physical cash	Livelinoods, Edu., Child dev	Stream - Ongoing
43	Cubra (2014) Avitabile et al. (2019)	Mexico	Development	Government	Programa de Anovo Alimentario (PAL)	Bank Transfer	Health Child Development	Stream Ongoing/Completed
45	Benhassine et al. (2015)	Morocco	Development	Government	riograma de Apoyo Annicitario (FAL)	Physical cash	Education	Stream - Completed
46	Berkel et al. (2021)	Mozambique	Humanitarian (cyclone)	Researchers		Mobile money	Micro-enterprise growth	Lump Sum
47	Field and Maffioli (2021)	Myanmar	Humanitarian (drought)	NGO	Save the Children	Bank transfer	intero enterprise growth	Stream - Ongoing
48	Levere et al. (2022)	Nepal	Development	Government		Physical Cash	Child development	Stream - Ongoing
49	Premand and Stoeffler (2020), Premand and Stoeffler (202	Niger	Development	Government		Physical cash		Stream - Ongoing
50	Cullen et al. (2020)	Nigeria	Development	NGO	Catholic Relief Services (CRS)	Physical Cash		Stream - Completed
51	Olajide (2016), Alzua et al. (2020)	Nigeria	Development	Government		Physical cash		Stream - Ongoing
52	3 papers, see notes	Nigeria	Development	NGO	Child Development Grant Programme	Physical cash	Child development	Stream - Ongoing/Completed
53	Fenn et al. (2017)	Pakistan	Development	NGO	Action Against Hunger	Physical cash		Stream - Ongoing/Completed
54	Bando et al. (2022)	Paraguy	Development	NGO	IPA	Bank Transfer		Stream - Ongoing
55	McIntosh and Zeitlin (2020)	Rwanda	Development	NGO	Give Directly	Mobile money		Lump Sum, Stream
56	McIntosh and Zeitlin (2022)	Rwanda	Development	NGO	Give Directly	Mobile money		Lump Sum
57	Ambler et al. (2018b)	Senegal	Development	NGO	FONGS		Agriculture	Lump Sum
58	Chowdhury et al. (2017)	South Sudan	Development	NGO	BRAC	Physical cash		Lump Sum
59	de Mel et al. (2010)	Sri Lanka	Development	Researchers		Bank check		Lump Sum
60	Danu et al. (2024) Drieuw et al. (2020)	Tanzania	Development	Coverences		Physical Cash	Child davalar	Stream Ongoing
62	Gazeaud et al. (2020)	Tunisia	Development	Government		r nysicai cash Bank Transfer	Eemale financial development	r Lump Sum
63	Biorvatn et al. (2022)	Uganda	Development	Researchers		Mobile money	Business development	Lump Sum
64	Cooke and Mukhopadhyay (2019)	Uganda	Development	NGO	Give Directly	Mobile money	pasmess development	Lump Sum
65	Genehmiot and Tafese (2019)	Uganda	Development	Researchers	Give Directly	Mobile money	Business development	Lump Sum
66	Kahura et al. (2022)	Uganda	Development	NGO	GiveDirectly	Mobile money	ness de retopment	Lump Sum
67	Fiala (2014), Fiala (2017), Fiala et al. (2022)	Uganda	Humanitarian (Refugees)	NGO	PRIDE Microfinance	Bank Transfer	Business development	Lump Sum
68	SedImayr et al. (2018)	Uganda	Development	NGO	Village Enterprises	Physical cash		Lump Sum
69	Gilligan et al. (2013)	Uganda	Development	NGO	World Food Programme (WFP)	Physical cash	Child development	Stream - Ongoing
70	3 papers, see notes	Uganda	Development	Government	Youth Opportunities Program (YOP)	Bank transfer	Micro-enterprise growth	Lump Sum
71	8 papers, see notes	Zambia	Development	Government	Zambia CGP	Physical cash	Child support	Stream - Ongoing/Completed
72	Handa et al. (2018), Handa et al. (2020)	Zambia	Development	Government	Zambia Multiple Category Program	Physical cash		Stream - Ongoing

Program D J seported in 4 papers: Schady and Araujo (2006), Schady and Paxson (2010), Fernald and Hidrobo (2011), and Edmonds and Schady (2012), Program ID 25 reported in a papers: Papers: Schady and Paxison (2010), Program ID 34 reported in 3 papers: Pace et al. (2019), Schastian et al. (2019), and Prifit et al. (2019), Program ID 44 reported in 5 papers: Caracteria et al. (2014), Handa et al. (2014), Handa et al. (2014), Handa et al. (2014), Handa et al. (2014), U212, Diagram ID 34 reported in 5 papers: Schady and Paxison (2010), Caracterio et al. (2021), Program ID 54 reported in 3 papers: Pace et al. (2019), Schastian et al. (2019), and Prifit et al. (2019), Program ID 34 reported in 5 papers: Caracteria et al. (2012), Addoulayi et al. (2016), Killburn et al. (2018), and Molotasky and Handa (2021), Program ID 41 reported in 5 papers: Schady and Paxison (2010), Caracterio et al. (2021), Caracterio et al. (2021), Caracterio et al. (2021), Program ID 71 reported in 3 papers: Baird et al. (2014), Handa et al. (2015), Handa et al. (2016), Handa et al. (2016), Manda et al. (2017), and Blattman et al. (2017), and Blattman et al. (2019), Program ID 72 reported in 8 papers: Schady and Paxison (2010), Handa et al. (2016), Handa et al. (2017), and Blattman et al. (2017), and B

Appendix Table A.1b Program Characteristics cont

		Trogram Characteristics con	n.					
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)
					Months	Months	Total	Monthly
Program	Papers	Disbursement	Baseline	Baseline	Since First	Since Last	Transfer	Transfer
ID	1	Schedule	Year	Sample	Transfer	Transfer	Amount	Amount
1	Kashafi and Naita (2022)	Lump Sum	2016	2 /00	22	22	1717 1744	75
2	Abmod at al. (2010) Abmod at al. (2021) Tausaaf (2021)	Stream Ongoing	2010	5,000	23	23	1/1/ - 1/44	61
2	Animed et al. (2019) , Animed et al. (2021) , Tauseer (2021)	Stream - Ongoing	2012	5,000	12	12	1592	1
3	Hossain et al. (2022)	Lump Sum	2012	594	12	12	15	1
4	Hussam et al. (2021)	Stream - Completed	2019	/45	3 - 4	1 - 2	100	50
5	Undurraga et al. (2016)	Lump Sum	2008	494	16	16	29 - 87	4
6	Grimm et al. (2021)	Lump Sum	2018	1,300	9	9	8484	943
7	Houngbe et al. (2017), Houngbe et al. (2018)	Stream - Ongoing	2013	1,185	24	0	420	42
8	Akresh et al. (2019)	Stream - Ongoing	2008	2,775	12 - 24	0	127 - 253	10
9	Londoño-Vélez and Querubin (2022)	Stream - Completed	2020	3,462	2	0	160	80
10	Javier et al. (2022)	Stream - Completed	2019	2,358	12 - 21	8 - 16	1371 - 2742	685
11	Grellety et al.	Stream - Ongoing	2015	1,481	6	0	406	68
12	4 papers, see notes	Stream - Ongoing	2003	1.883	15 - 23	0	617 - 812	36
13	Crépon et al. (2023)	Lump Sum	2016	3,293	16	16	682 - 825	43 - 52
14	Karlan et al. (2015) Fafchamps et al. (2014)	Lump Sum	2009	160	2 - 14	2 - 14	300	21 - 150
15	Fafchamps et al. (2013), Futernamps et al. (2011)	Lump Sum	2009	703	3 - 34	3 - 34	284	8 - 95
15		Lump Sum	2000	775	5-54	5-54	204	0 - 75
16	Karlan et al. (2014)	Lump Sum	2008	502	24	24	/95	33
17	Gangopadhyay et al (2014)	Stream - Ongoing	2010	450	12	0	761	63
18	Weaver et al. (2023)	Stream - Ongoing/Completed	2018	2,400	11 - 38	0 - 14	242 - 527	22
19	Hussam et al (2022)	Lump Sum	2015	1,345	12	12	300	25
20	McKelway et al. (2023)	Lump Sum	2021	1,120	1 - 3	1 - 3	35	14 - 69
21	Acampora et al. (2022)	Stream (Annual)	2019	521	24	12	45	2
22	Brooks et al. (2022)	Lump Sum	2020	753	2	2	92 - 98	48
23	Haushofer et al. (2021)	Lump Sum, Stream	2017	5,756	14	13 - 14	958 - 1197	68 - 824
24	4 papers, see notes	Stream - Ongoing	2007	2.294	24 - 48	0	1269 - 2322	49
25	Haushofer and Shapiro (2016, 2018), Bhargaya (2019)	Lump Sum Stream	2011	1.008	7 - 36	2 - 27	384 - 1449	11 - 181
25	Eager et al. (2020)	Lump Sum	2011	7 845	10	2 - 27	1723 - 2000	01 - 110
20	Banarias et al. (2020)	Lump Sum Stroom	2017	0 752	20 27	0 27	2027 5260	161 217
27	Banerjee et al. (2020)	Lump Sum, Stream	2017	8,733	20-27	0-27	3937 - 3209	101 - 217
28	Orkin et al. (2023)	Lump Sum	2017	8,339	19	17	1942	102
29	Merttens et al. (2013), Dietrict and Schmerzeck (2019)	Stream - Ongoing	2009	5,108	12 - 24	0	351 - 835	35
30	Haushofer et al. (2020)	Lump Sum	2011	789	12	12	321	28
31	Brudevold-Newman et al. (2017)	Lump Sum	2013	905	9 - 18	9 - 18	480 - 516	27 - 61
32	Maluccio et al. (2023)	Lump Sum	2020	1,912	1	1	294	294
33	3 papers, see notes	Stream - Ongoing/Completed	2011	3,054	24	0 - 12	386 - 1420	32 - 59
34	Aggarwal et al. (2022)	Lump Sum, Stream	2018	1,220	20	5 - 20	211 - 632	11 - 35
35	Blattman et al. (2017)	Lump Sum	2009	999	1 - 13	1 - 13	200	16 - 246
36	Datta et al. (2021)	Stream - Ongoing	2017	4,373	18	0	998	55
37	Aggarwal et al. (2022)	Lump Sum	2019	1.378	23	21 - 23	516 - 1549	22 - 67
38	Ambler et al. $(2018, 2020)$ Ambler et al. $(2018h)$	Lump Sum	2017	1 1 87	9 - 26	4 - 21	204 - 225	9 - 25
20	5 papara see potes	Stream Ongoing	2014	2 521	12 24	4-21	177 614	11 22
40	5 papers, see notes	Stream Ongoing/Completed	2012	2 706	12 - 24	0 28	218 521	11 - 33
40	5 papers, see notes	Stream - Ongoing/Completed	2008	5,790	12 - 46	0 - 38	218 - 321	22
41	Beaman et al. (2023)	Lump Sum	2010	6,201	12 - 84	12 - 84	173 - 285	3 - 24
42	Sessou and Henning (2019), Heath et al. (2020)	Stream - Ongoing	2014	3,080	24	0	342 - 1026	14 - 42
43	Aguila et al. (preliminary)	Stream - Ongoing/Completed	2009	2,593	14 - 26	0 - 14	756 - 883	63
44	Cuhna (2014), Avitabile et al. (2019)	Stream - Ongoing/Completed	2003	5,414	12 - 84	0 - 66	278 - 436	24
45	Benhassine et al. (2015)	Stream - Completed	2008	2,010	18	2	726	45
46	Berkel et al. (2021)	Lump Sum	2019	475	5	5	227	45
47	Field and Maffioli (2021)	Stream - Ongoing	2016	2,338	30	0	596 - 742	23
48	Levere et al. (2022)	Stream - Ongoing	2013	4,228	4	0	95	24
49	Premand and Stoeffler (2020), Premand and Stoeffler (2022)	Stream - Ongoing	2012	4,330	24	0	1006	42
50	Cullen et al. (2020)	Stream - Completed	2015	2,539	30	15	552	37
51	Olajide (2016), Alzua et al. (2020)	Stream - Ongoing	2013	6,720	6 - 12	0	309 - 619	52
52	3 papers, see notes	Stream - Ongoing/Completed	2014	3.688	12 - 48	0 - 25	243 - 912	20
53	Fenn et al. (2017)	Stream - Ongoing/Completed	2015	3 584	6 - 12	0-6	264 - 528	44 - 88
54	Bando et al. (2022)	Stream - Ongoing	2015	3 000	12	0	201 320	178
55	MaIntosh and Zaitlin (2020)	Lump Sum Straam	2010	2 017	12	0 12	104 1241	16 112
55	MeIntosh and Zeitlin (2020)	Lump Sum, Stream	2010	1.040	14	0-12	761 1800	54 125
50			2017	1,040	0.01	12	/01 - 1890	54 - 155
57	Ambler et al. (2018b)	Lump Sum	2014	600	9 - 21	9 - 21	379	18 - 42
58	Chowdhury et al. (2017)	Lump Sum	2013	649	12	12	1313	109
59	de Mel et al. (2010)	Lump Sum	2010	387	12 - 66	12 - 66	263	4 - 22
60	Baird et al. (2024)	Lump Sum	2008	293	16	16	529	33
61	Briaux et al. (2020)	Stream - Ongoing	2014	2,658	24	0	460	19
62	Gazeaud et al. (2023)	Lump Sum	2016	2,000	27	27	667 - 708	26
63	Bjorvatn et al. (2022)	Lump Sum	2018	1,496	12	5	279 - 293	24
64	Cooke and Mukhopadhyay (2019)	Lump Sum	2016	2,018	18	17	2571	143
65	Genehmigt and Tafese (2019)	Lump Sum	2012	174	18 - 48	18 - 48	308	6 - 17
66	Kahura et al. (2022)	Lump Sum	2020	1.264	21	19	2406 - 2485	118
67	Fiala (2014), Fiala (2017), Fiala et al. (2022)	Lump Sum	2012	1.551	6 - 24	6 - 24	899	37 - 150
68	SedImavr et al. (2018)	Lump Sum	2012	5 774	15 - 27	8 - 20	242	9 - 16
60	Gilligan et al. (2013)	Stream - Ongoing	2014	2 050	10-27	0.20	100	12
70	2 nonors, soo notes	Lump Sur	2011	2,939	24 146	24 146	180	6 20
70	s papers, see notes		2008	2,077	24 - 146	24 - 140	115 - 925	0 - 39
/1	o papers, see noies	Suream - Ongoing/Completed	2010	3,078	24 - 82	0 - 28	490 - 1102	22
12	Handa et al. (2018), Handa et al. (2020)	Stream - Ongoing	2010	3,078	24 - 36	0	507 - 761	21

All currency values are reported in 2010 USD PPP.

Program ID	Citation(s)
1	— Kashefi, Fatema, and Hisahiro Naito. "Does Receiving a Cash
	Grant Improve Individual Earnings in a War-Torn Country?
	Evidence from a Randomized Experiment in Afghanistan [version 2;
	peer review: 2 approved]," F1000 Research, April 2023.
2	— Ahmed, Akhter, John F. Hoddinott, and Shalini Roy. "Food
	Transfers, Cash Transfers, Behavior Change Communication and
	Child Nutrition: Evidence from Bangladesh," IFPRI Discussion
	Paper, September 2019.
	— Ahmed, Akhter U., Jena Hamadani, Md Zahidul Hassan, Melissa
	Hidrobo, John Hoddinott, Bastien Koch, Kalyani Raghunathan,
	and Shalini Roy. "Post-Program Impacts of Transfer Programs on
	Child Development: Experimental Evidence from Bangladesh,"
	IFPRI Discussion Paper 2090, December 2021.
	Tauseef, Salauddin. "The Importance of Nutrition Education in
	Achieving Food Security and Adequate Nutrition of the Poor:
	Experimental Evidence from Bangladesh," Oxford Bulletin of
	Econommics and Statistics 84, no.1 (February 2022) 241-71.
3	— Hossain, Sheikh Jamal, Bharaty Rani Roy, Hasan Mahmud
	Sujon, Thach Tran, Jane Fisher, Fahmida Tofail, Shams El Arifeen,
	and Jena Derakhshani Hamadani. "Effects of Integrated
	Psychosocial Stimulation and Unconditional Cash Transfer on
	Children's Development in Rural Bangladesh: A Cluster
	Randomized Controlled Trial." Social Science & Medicine 293
	(January 2022): 114657.
4	— Hussam, Reshmaan, Erin Kelley, Gregory Lane, and Fatima
	Zahra. "The Psychological Value of Employment," NBER Working
	Paper Series 28924, June 2021.

Appendix Table A.2: Citations of Full Sample

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
5	— Undurraga, Eduardo A., Jere R. Behrman, William R. Leonard,
	and Ricardo A. Godoy. "The Effects of Community Income
	Inequality on Health: Evidence from a Randomized Control Trial in
	the Bolivian Amazon." Social Science & Medicine 149 (January
	2016): 66–75.
6	— Grimm, Michael, Sidiki Soubeiga, and Michael Weber.
	"Short-Term Impacts of Targeted Cash Grants and Business
	Development Services: Experimental Evidence from Entrepreneurs
	in Burkina Faso," Policy Research Working Papers, December 2021.
7	— Houngbe, Freddy, Audrey Tonguet-Papucci, Chiara Altare,
	Myriam Ait-Aissa, Jean-François Huneau, Lieven Huybregts, and
	Patrick Kolsteren. "Unconditional Cash Transfers Do Not Prevent
	Children's Undernutrition in the Moderate Acute Malnutrition Out
	(Mam'out) Cluster-Randomized Controlled Trial in Rural Burkina
	Faso." The Journal of Nutrition 147, no. 7 (July 2017): 1410–17.
	— Puett, Chloe, Cécile Salpéteur, Freddy Houngbe, Karen
	Martínez, Dieynaba S. N'Diaye, and Audrey Tonguet-Papucci.
	"Costs and Cost-Efficiency of a Mobile Cash Transfer to Prevent
	Child Undernutrition During the Lean Season in Burkina Faso: A
	Mixed Methods Analysis from the Mam'out Randomized Controlled
	Trial." Cost Effectiveness and Resource Allocation 16, no. 1 (April
	2018): 13.
8	— Akresh, Richard, Damien de Walque, and Harounan Kazianga.
	"Evidence from a Randomized Evaluation of the Household Welfare
	Impacts of Conditional and Unconditional Cash Transfers Given to
	Mothers or Fathers," World Bank Policy Research Working Papers,
	June 2016.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
9	— Londono-Velez, Juliana, and Pablo Querubin. "The Impact of
	Emergency Cash Assistance in a Pandemic: Experimental Evidence
	from Colombia." The Review of Economics and Statistics 104, no. 1
	(March 2022): 157–65.
10	— Javier, Kaleb, Jeremy Magruder, Nicolas Polasek, and Eleanor
	Wiseman. "DRC Benchmarking Report." USAID: Washington, DC,
	USA, September 2022.
11	— Grellety, Emmanuel, Pélagie Babakazo, Amina Bangana,
	Gustave Mwamba, Ines Lezama, Noël Marie Zagre, and Eric-Alain
	Ategbo. "Effects of Unconditional Cash Transfers on the Outcome
	of Treatment for Severe Acute Malnutrition: A Cluster-Randomised
	Trial in the Democratic Republic of the Congo." BMC Medicine
	215, no. 1 (April 2017): 87.
12	— Edmonds, Eric V, and Norbert Schady. "Poverty Alleviation and
	Child Labor." American Economic Journal: Economic Policy 4, no.
	4 (November 2012): 100–124.
13	— Carneiro, Pedro, Karen Macours, and Pedro Vicente. "Does
	Information Break the Political Resource Curse? Experimental
	Evidence from Mozambique." World Development 157 (October
	2022): 105941.
14	— Ambler, Kate, and Alan de Brauw. "The Impacts of Cash
	Transfers on Women's Empowerment: Learning from Pakistan's
	BISP Program." The World Bank Economic Review 34, no. 1
	(February 2020): 35–64.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
15	— Akresh, Richard, Emilie Bagby, Damien de Walque, and
	Harounan Kazianga. "Child Ability and Household Human Capital
	Investment Decisions in Burkina Faso." Economic Development and
	Cultural Change 66, no. 3 (April 2018): 657–95.
16	— Akresh, Richard, Emilie Bagby, Damien de Walque, and
	Harounan Kazianga. "Knowing What's Good for You: Can a
	Replicable and Scalable Community-Based Program Improve the
	Lives of Young Children in Rural Africa?" Economic Development
	and Cultural Change 65, no. 4 (July 2017): 713–53.
17	— Premand, Patrick, Ximena Viquez, Rodrigo Barreto, and Oumar
	Barry. "A Cash Plus Program for Sustainable Poverty Reduction:
	Experimental Evidence from the Productive Social Safety Net in
	the Sahel." World Bank Policy Research Working Paper 10284,
	November 2022.
18	— Barrera-Osorio, Felipe, Paul Gertler, Nozomi Nakajima, Harry
	Anthony Patrinos, and Jeremy Vaheesan. "Long-Term Impacts of
	Conditional Cash Transfers after 10 Years: Evidence from
	Colombia." World Bank Policy Research Working Paper 7130,
	November 2014.
19	— Aker, Jenny, Rachid Boumnijel, Amanda McClelland, and Niall
	Tierney. "Payment Mechanisms and Antipoverty Programs:
	Evidence from a Mobile Money Cash Transfer Experiment in
	Niger." Economic Development and Cultural Change 65, no. 1
	(October 2016): 1–37.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
20	— Long, Carolyn, and Scott Wisor. "Understanding the
	Psychosocial Impact of Cash Transfers in Protracted Humanitarian
	Settings: A Qualitative Study." Journal of Social Policy 52, no. 1
	(January 2023): 34–54.
21	— Acampora, Michelle, Lorenzo Casaburi, and Jack Willis. "Land
	Rental Markets: Experimental Evidence from Kenya," NBER
	Working Paper Series, September 2022.
22	— Brooks, Wyatt, Kevin Donovan, Terence R. Johnson, and
	Jackline Oluoch-Aridi. "Cash Transfers as a Response to Covid-19:
	Experimental Evidence from Kenya." Journal of Development
	<i>Economics</i> 158 (September 2022): 102929.
23	— Haushofer, Johannes, Robert Mudida, and Jeremy P. Shapiro.
	"The Comparative Impact of Cash Transfers and a Psychotherapy
	Program on Psychological and Economic Well-Being," NBER
	Working Paper Series, November 2020.
24	— The Kenya CT-OVC Evaluation Team. "The Impact of Kenya's
	Cash Transfer for Orphans and Vulnerable Children on Human
	Capital." Journal of Development Effectiveness 4, no. 1 (April
	2012): 38–49.
	— Handa, Sudhanshu, Bruno Martorano, Carolyn Halpern, Audrey
	Pettifor, and Harsha Thirumurthy. "The Impact of the Kenya Ct –
	Ovc on Parents' Wellbeing and Their Children," June 2014.
	— Handa, Sudhanshu, Carolyn Tucker Halpern, Audrey Pettifor,
	and Harsha Thirumurthy. "The Government of Kenya's Cash
	Transfer Program Reduces the Risk of Sexual Debut Among Young
	People Age 15-24." PLoS ONE 9, no. 1 (January 2014): e85473.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
	— Kilburn, Kelly, Harsha Thirumurthy, Carolyn Tucker Halpern,
	Audrey Pettifor, and Sudhanshu Handa. "Effects of a Large-Scale
	Unconditional Cash Transfer Program on Mental Health Outcomes
	of Young People in Kenya." Journal of Adolescent Health 58, no. 2
	(February 2016): 223–29.
25	— Haushofer, Johannes, and Jeremy Shapiro. "The Short-Term
	Impact of Unconditional Cash Transfers to the Poor: Experimental
	Evidence from Kenya." The Quarterly Journal of Economics 131,
	no. 4 (November 2016): 1973–2042.
	— Haushofer, Johannes, and Jeremy Shapiro. "The Long-Term
	Impact of Unconditional Cash Transfers: Experimental Evidence
	from Kenya." Working Paper, January 2018.
	— Bhargava, Iti. "Unconditional Cash Transfers and Their Impact
	on Well-Being in Kenya," Independent, May 2019.
26	— Egger, Dennis, Johannes Haushofer, Edward Miguel, Paul
	Niehaus, and Michael Walker. "General Equilibrium Effects of Cash
	Transfers: Experimental Evidence from Kenya." <i>Econometrica</i> 90,
	no. 6 (November 2022): 2603–43.
27	— Banerjee, Abhijit, Michael Faye, Alan Krueger, Paul Niehaus,
	and Tavneet Suri. "Effects of a Universal Basic Income During the
	Pandemic." Working Paper, December 2020.
28	— Orkin, Kate, Robert Garlick, Mahreen Mahmud, Richard
	Sedlmayr, Johannes Haushofer, and Stefan Dercon. "Aspiring to a
	Better Future: Can a Simple Psychological Intervention Reduce
	Poverty?," Working Paper, January 2023.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
29	— Dietrich, Stephan, and Georg Schmerzeck. "Cash Transfers and
	Nutrition: The Role of Market Isolation After Weather Shocks."
	Food Policy 87 (August 2019): 101739.
	— Merttens, Fred, Alex Hurrell, Marta Marzi, Ramla Attah,
	Maham Farhat, Andrew Kardan, and Ian MacAuslan. "Kenya
	Hunger Safety Net Programme Monitoring and Evaluation
	Component," Oxford Policy Management Impact Evaluation
	Report, June 2013.
30	— Haushofer, Johannes, Matthieu Chemin, Chaning Jang, and
	Justin Abraham. "Economic and Psychological Effects of Health
	Insurance and Cash Transfers: Evidence from a Randomized
	Experiment in Kenya." Journal of Development Economics 144
	(May 2020): 102416.
31	— Brudevold-Newman, Andrew, Maddalena Honorati, Pamela
	Jakiela, and Owen Ozier. "A Firm of One's Own: Experimental
	Evidence on Credit Constraints and Occupational Choice," World
	Bank Policy Research Working Papers 7977, February 2017.
32	— Maluccio, John A., Erica Soler-Hampejsek, Beth Kangwana, Eva
	Muluve, Faith Mbushi, and Karen Austrian. "Effects of a Single
	Cash Transfer on School Re-Enrollment During Covid-19 Among
	Vulnerable Adolescent Girls in Kenya: Randomized Controlled
	Trial." Economics of Education Review 95 (August 2023): 102429.
33	— Pace, Noemi, Silvio Daidone, Benjamin Davis, and Luca
	Pellerano. "Shaping Cash Transfer Impacts Through
	'Soft-Conditions': Evidence from Lesotho." Journal of African
	Economies, June 2018.

Program ID	Citation(s)
	— Sebastian, Ashwini, Ana Paula de la O Campos, Silvio Daidone,
	Noemi Pace, Benjamin Davis, Ousmane Niang, and Luca Pellerano.
	"Cash Transfers and Gender Differentials in Child Schooling and
	Labor: Evidence from the Lesotho Child Grants Programme."
	Population and Development Review 45 (December 2019): 181–208.
	— Prifti, Ervin, Silvio Daidone, and Benjamin Davis. "Causal
	Pathways of the Productive Impacts of Cash Transfers:
	Experimental Evidence from Lesotho." World Development 115
	(March 2019): 258–68.
34	— Aggarwal, Shilpa, Jenny C Aker, Dahyeon Jeong, Naresh Kumar,
	David Sungho Park, Jonathan Robinson, and Alan Spearot. "The
	Dynamic Effects of Cash Transfers: Evidence from Rural Liberia
	and Malawi." Working Paper, October 2022.
35	— Blattman, Christopher, Julian C. Jamison, and Margaret
	Sheridan. "Reducing Crime and Violence: Experimental Evidence
	from Cognitive Behavioral Therapy in Liberia." American
	Economic Review 107, no. 4 (April 2017): 1165–1206.
36	— Datta, Saugato, Joshua Martin, Catherine MacLeod, Laura B
	Rawlings, and Andrea Vermehren. "Do Behavioral Interventions
	Enhance the Effects of Cash on Early Childhood Development and
	Its Determinants? Evidence from a Cluster-Randomized Trial in
	Madagascar," World Bank Policy Research Working Paper 9747,
	August 2021
37	— Aggarwal, Shilpa, Jenny C Aker, Dahyeon Jeong, Naresh Kumar,
	David Sungho Park, Jonathan Robinson, and Alan Spearot. "The
	Dynamic Effects of Cash Transfers: Evidence from Rural Liberia
	and Malawi." Working Paper, October 2022.

Appendix Table A.2 (Cont.)

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
38	— Ambler, Kate, Alan de Brauw, and Susan Godlonton.
	"Agriculture Support Services in Malawi: Direct Effects,
	Complementarities, and Time Dynamics," IFPRI Discussion Paper
	1725, May 2018.
	— Ambler, Kate, Alan de Brauw, and Susan Godlonton. "Rural
	Labor Market Responses to Large Lumpy Cash Transfers: Evidence
	from Malawi," Working Paper, December 2018.
	— Ambler, Kate, Alan de Brauw, and Susan Godlonton. "Cash,
	Inputs, and Information: Direct Effects and Complementarities in
	Malawi," Working Paper, April 2020.
39	— Abdoulayi, Sara, Sudhanshu Handa, Gustavo Angeles, Clare
	Barrington, Peter Mvula, and Maxton Tsoka. "Malawi Social Cash
	Transfer Programme Impact Evaluation." Impact Evaluation
	Report, December 2016.
	— Covarrubias, Katia, Benjamin Davis, and Paul Winters.
	"From Protection to Production: Productive Impacts of the Malawi
	Social Cash Transfer Scheme." Journal of Development
	<i>Effectiveness</i> 4, no. 1 (March 2012): 50–77.
	— De Hoop, Jacobus, Valeria Groppo, and Sudhanshu Handa.
	"Cash Transfers, Microentrepreneurial Activity, and Child Work:
	Evidence from Malawi and Zambia." The World Bank Economic
	Review 34, no. 3 (October 2020): 670–97.
	— Kilburn, Kelly, Sudhanshu Handa, Gustavo Angeles, Maxton
	Tsoka, and Peter Mvula. "Paying for Happiness: Experimental
	Results from a Large Cash Transfer Program in Malawi." Journal of
	Policy Analysis and Management 37, no. 2 (February 2018):
	331–56.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
	— Molotsky, Adria, and Sudhanshu Handa. "The Psychology of
	Poverty: Evidence from the Field." Journal of African Economies
	330, no. 3 (June 2021): 207–24.
40	— Baird, Sarah, Craig McIntosh, and Berk Özler. "Cash or
	Condition? Evidence from a Cash Transfer Experiment." The
	Quarterly Journal of Economics 126, no. 4 (November 2011):
	1709–53.
	— Baird, Sarah J, Richard S Garfein, Craig T McIntosh, and Berk
	Özler. "Effect of a Cash Transfer Programme for Schooling on
	Prevalence of Hiv and Herpes Simplex Type 2 in Malawi: A Cluster
	Randomised Trial." The Lancet 379, no. 9823 (April 2012):
	1320–29.
	— Baird, Sarah, Ephraim Chirwa, Jacobus De Hoop, and Berk
	Özler. "Girl Power: Cash Transfers and Adolescent Welfare.
	Evidence from a Cluster-Randomized Experiment in Malawi,"
	NBER Working Paper Series, March 2013.
	— Baird, Sarah, Craig McIntosh, and Berk Özler. "When the
	Money Runs Out: Do Cash Transfers Have Sustained Effects on
	Human Capital Accumulation?," Policy Research Working Papers,
	December 2016.
	— Sessou, Eric, Melissa Hidrobo, Shalini Roy, and Lieven
	Huybregts. "Schooling Impacts of an Unconditional Cash Transfer
	Program in Mali," IFPRI Discussion Paper, October 2022.
41	— Beaman, Lori, Dean Karlan, Bram Thuysbaert, and Christopher
	Udry. "Selection Into Credit Markets: Evidence From Agriculture
	in Mali." Econometrica 91, no. 5 (September 2023): 1595–1627.
Appendix Table A.2 (Cont.)

Program ID	Citation(s)
42	— Heath, Rachel, Melissa Hidrobo, and Shalini Roy. "Cash
	Transfers, Polygamy, and Intimate Partner Violence: Experimental
	Evidence from Mali." Journal of Development Economics 143
	(March 2020): 102410.
	— Sessou, Eric, and Christian H C A Henning. "Cash Transfers
	and School Enrolment," Working Papers of Agricultural Policy,
	February 2019.
43	— Aguila, Emma, Arie Kapteyn, and Erik Meijer. "Effects of
	Permanent Income Increases on Neighbors: Evidence from an Rct,"
	Working Paper, (preliminary).
44	— Cunha, Jesse M. "Testing Paternalism: Cash Versus in-Kind
	Transfers." American Economic Journal: Applied Economics 6, no.
	2 (April 2014): 195–230.
	— Avitabile, Ciro, Jesse M Cunha, and Ricardo Meilman Cohn.
	"The Medium Term Impacts of Cash and In-Kind Food Transfers
	on Learning," Working Paper, July 2020.
45	— Benhassine, Najy, Florencia Devoto, Esther Duflo, Pascaline
	Dupas, and Victor Pouliquen. "Turning a Shove into a Nudge? A
	'Labeled Cash Transfer' for Education." American Economic
	Journal: Economic Policy 7, no. 3 (August 2015): 86–125.
46	— Berkel, Hanna, Peter Fisker, and Finn Tarp. "Cash Grants to
	Manufacturers After Cyclone Idai: RCT Evidence from
	Mozambique," WIDER Working Paper 2021/87, May 2021.
47	— Field, Erica M., and Elisa M. Maffioli. "Are Behavioral Change
	Interventions Needed to Make Cash Transfer Programs Work for
	Children? Experimental Evidence from Myanmar," NBER Working
	Paper Series, February 2021.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
48	— Levere, Michael, Gayatri Acharya, and Prashant Bharadwaj.
	"The Role of Information and Cash Transfers in Early Childhood
	Development: Short and Long Run Evidence from Nepal."
	Economic Development and Cultural Change, November 2022.
49	— Premand, Patrick, and Quentin Stoeffler. "Do Cash Transfers
	Foster Resilience? Evidence from Rural Niger," World Bank Policy
	Research Working Papers, November 2020.
	— Premand, Patrick, and Oumar Barry. "Behavioral Change
	Promotion, Cash Transfers and Early Childhood Development:
	Experimental Evidence from a Government Program in a
	Low-Income Setting." Journal of Development Economics 158
	(September 2022): 102921.
50	— Cullen, Claire, and Paula Gonzalez Martinez. "Empowering
	Women Without Backlash?," Working Paper, January 2020.
51	— Alzua, Maria Laura, Natalia Cantet, Ana C Dammert, and
	Damilola Olajide. "Mental Health Effects of an Old Age Pension:
	Experimental Evidence for Ekiti State in Nigeria," Agricultural &
	Applied Economics Association Working Paper, July 2020.
	— Olajide, Damilola, Adaku Ezeibe, Olusegun Sotola, Kafilah Gold,
	Olufunke Olufemi, and Florence Adebayo. "Randomised Evaluation
	of Unconditional Cash Transfer Scheme for the Elderly in Ekiti
	State Nigeria," Partnership for Economic Policy Working Paper,
	April 2016.
	-

Program ID	Citation(s)
52	— Carneiro, Pedro, Lucy Kraftman, Giacomo Mason, Lucie Moore,
	Imran Rasul, and Molly Scott. "The Impacts of a Multifaceted
	Prenatal Intervention on Human Capital Accumulation in Early
	Life." American Economic Review 111, no. 8 (August 2021):
	2506-49.
	— Carneiro, Pedro, Lucy Kraftman, Imran Rasul, and Molly Scott.
	"Do Cash Transfers Promoting Early Childhood Development Have
	Unintended Consequences on Fertility?," Working Paper,
	September 2021.
	— Mason, Giacomo. "Essays in the Economics of Child Health and
	Skill Formation," University College London Dissertation, June 2019
53	— Fenn, Bridget, Tim Colbourn, Carmel Dolan, Silke Pietzsch,
	Murtaza Sangrasi, and Jeremy Shoham. "Impact Evaluation of
	Different Cash-Based Intervention Modalities on Child and
	Maternal Nutritional Status in Sindh Province, Pakistan, at 6
	Months and at 1 Year: A Cluster Randomised Controlled Trial."
	<i>PLOS Medicine</i> 14, no. 5 (May 2017): e1002305.
54	— Bando, Rosangela, Sebastian Galiani, and Paul Gertler.
	"Another Brick on the Wall: On the Effects of Non-Contributory
	Pensions on Material and Subjective Well Being." Journal of
	Economic Behavior & Organization 195 (March 2022): 16–26.
55	— McIntosh, Craig, and Andrew Zeitlin. "Benchmarking a Child
	Nutrition Program Against Cash: Evidence from Rwanda,"
	Working Paper, December 2020.

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
56	— McIntosh, Craig, and Andrew Zeitlin. "Using Household Grants
	to Benchmark the Cost Effectiveness of a USAID Workforce
	Readiness Program." Journal of Development Economics, June
	2022.
57	— Ambler, Kate, Alan de Brauw, and Susan Godlonton. "Cash
	Transfers and Management Advice for Agriculture: Evidence from
	Senegal." The World Bank Economic Review 34, no. 3 (October
	2020): 597-617.
58	— Chowdhury, Reajul, Elliott Collins, Ethan Ligon, and Kaivan
	Munshi. "Valuing Assets Provided to Low-Income Households in
	South Sudan," Working Paper, July 2017.
59	— Mel, Suresh de, and David Mckenzie. "One-Time Transfers of
	Cash or Capital Have Long-Lasting Effects on Microenterprises in
	Sri Lanka." <i>Science</i> 335 (February 2012): 962–66.
60	— Baird, Sarah, Craig McIntosh, Berk Özler, and Utz Pape. "Asset
	Transfers and Anti-Poverty Programs: Experimental Evidence from
	Tanzania." Journal of Development Economics 166 (January 2024):
	103182.
61	— Briaux, Justine, Yves Martin-Prevel, Sophie Carles, Sonia
	Fortin, Yves Kameli, Laura Adubra, Andréa Renk, et al.
	"Evaluation of an Unconditional Cash Transfer Program Targeting
	Children's First-1,000-Days Linear Growth in Rural Togo: A
	Cluster-Randomized Controlled Trial." PLoS Medicine 17, no. 11
	(November 2020): e1003388.

Appendix Table A.2 (Cont.)

Appendix Table A.2 (Cont.)

Program ID	Citation(s)					
62	— Gazeaud, Jules, Nausheen Khan, Eric Mvukiyehe, and Olivier					
	Sterck. "With or Without Him? Experimental Evidence on Cash					
	Grants and Gender-Sensitive Trainings in Tunisia." Journal of					
	Development Economics 165 (October 2023): 103169.					
63	— Bjorvatn, Kjetil, Denise Ferris, Selim Gulesci, Arne Nasgowitz,					
	Vincent Somville, and Lore Vandewalle. "Childcare, Labor Supply,					
	and Business Development: Experimental Evidence from Uganda,"					
	GLMLIC Working Paper, June 2022.					
64	— Cooke, Michael, and Piali Mukhopadhyay. "Cash Crop:					
	Evaluating Large Cash Transfers to Coffee Farming Communities in					
	Uganda," Impact Evaluation Report, May 2019.					
65	— Klühs, Theres, and Tevin Tafese. "Rethinking the Effectiveness					
	of Cash Transfers - Evidence from a Field Experiment in Uganda."					
	Leibniz University Hannover Dissertation n. d., July 2019.					
66	— Kahura, Christine, Dan Stein, Emma Kimani, Emmanuel					
	Nshakira Rukundo, Gabrielle Posner, Heather Lanthorn, K J Zhao,					
	et al. "GiveDirectly Uganda Endline Report." ID Insight, August					
	2022.					
67	— Fiala, Nathan. "Stimulating Microenterprise Growth: Results					
	from a Loans, Grants and Training Experiment in Uganda,"					
	Working Paper, April 2014.					
	— Fiala, Nathan. "Business Is Tough, but Family Is Worse:					
	Household Bargaining and Investment in Microenterprises in					
	Uganda," Working Paper, April 2017.					
	— Fiala, Nathan, Julian Rose, Jörg Ankel-Peters, and Filder					
	Aryemo. "The (Very) Long-Run Impacts of Cash Grants During a					
	Crisis," EconStor Working Paper, August 2022.					

Program ID	Citation(s)						
68	— Sedlmayr, Richard, Anuj Shah, and Munshi Sulaiman.						
	"Cash-Plus: Poverty Impacts of Alternative Transfer-Based						
	Approaches." Journal of Development Economics 144 (May 2020):						
	102418.						
69	— Gilligan, Daniel O, Amy Margolies, Esteban Quiñones, and						
	Shalini Roy. "Impact Evaluation of Cash and Food Transfers at						
	Early Childhood Development Centers in Karamoja, Uganda,"						
	Impact Evaluation Report, May 2013.						
70	— Blattman, Christopher, Nathan Fiala, and Sebastian Martinez.						
	"Generating Skilled Self-Employment in Developing Countries:						
	Experimental Evidence from Uganda." The Quarterly Journal of						
	<i>Economics</i> 129, no. 2 (May 2014): 697–752.						
	— Blattman, Christopher, Nathan Fiala, and Sebastian Martin						
	"The Long Term Impacts of Grants on Poverty: 9-Year Evidence						
	from Uganda's Youth Opportunities Program," Working Paper,						
	April 2019.						
	— Calderone, Margherita. "Are There Different Spillover Effects						
	from Cash Transfers to Men and Women? Impacts on Investments						
	in Education in Post-War Uganda," WIDER Working Paper						
	2017/93, April 2017.						
71	— Chakrabarti, Averi, Sudhanshu Handa, Luisa Natali, David						
	Seidenfeld, and Gelson Tembo. "Cash Transfers and Child						
	Nutrition in Zambia," UNICEF Office of Research - Innocenti						
	Working Paper, August 2019.						

Appendix Table A.2 (Cont.)

Appendix Table A.2 (Cont.)

Program ID	Citation(s)
	— De Hoop, Jacobus, Valeria Groppo, and Sudhanshu Handa.
	"Cash Transfers, Microentrepreneurial Activity, and Child Work:
	Evidence from Malawi and Zambia." The World Bank Economic
	Review 34, no. 3 (October 2020): 670–97.
	— Handa, Sudhanshu, David Seidenfeld, Benjamin Davis, Gelson
	Tembo, and Zambia Cash Transfer Evaluation Team. "The Social
	and Productive Impacts of Zambia's Child Grant." Journal of
	Policy Analysis and Management 35, no. 2 (April 2016): 357–87
	— Handa, Sudhanshu, Luisa Natali, David Seidenfeld, Gelson
	Tembo, and Benjamin Davis. "Can Unconditional Cash Transfers
	Raise Long-Term Living Standards? Evidence from Zambia."
	Journal of Development Economics 133 (July 2018): 42–65.
	— Handa, Sudhanshu, Luisa Natali, David Seidenfeld, and Gelson
	Tembo. "The Impact of Zambia's Unconditional Child Grant on
	Schooling and Work: Results from a Large-Scale Social
	Experiment." Journal of Development Effectiveness 8, no. 3 (June
	2016): 346-67.
	— Natali, Luisa, Sudhanshu Handa, Amber Peterman, David
	Seidenfeld, and Gelson Tembo. "Does Money Buy Happiness?
	Evidence from an Unconditional Cash Transfer in Zambia." $S\!S\!M$ -
	Population Health 4 (April 2018): 225–35.
	— Seidenfeld, David. "Zambia's Child Grant Program: 36-Month
	Impact Report." Ministry of Community Development, Mother and
	Child Health, December 2014.

Program ID	Citation(s)	
	— Handa, Sudhanshu, Gelson Tembo, Palm Associates and	
	University of Zambia, Luisa Natali, UNICEF Office of	
	Research-Innocenti, Gustavo Angeles, University of North Carolina	
	at Chapel Hill, Gean Spektor, and University of North Carolina at	
	Chapel Hill. "In Search of the Holy Grail: Can Unconditional Cash	
	Transfers Graduate Households Out of Poverty in Zambia?,"	
	International Initiative for Impact Evaluation, September 2019.	
72	— Handa, Sudhanshu, Luisa Natali, David Seidenfeld, Gelson	
	Tembo, and Benjamin Davis. "Can Unconditional Cash Transfers	
	Raise Long-Term Living Standards? Evidence from Zambia."	
	Journal of Development Economics 133 (July 2018): 42–65.	
	— Handa, Sudhanshu, David Seidenfeld, and Gelson Tembo. "The	
	Impact of a Large-Scale Poverty-Targeted Cash Transfer Program	
	on Intertemporal Choice," Economic Development and Cultural	
	Change, September 2020.	

Appendix Table A.2 (Cont.)

Appendix Table A.3

			Targe	ting and Fr	aming by Program	
(1)	(2)	(3)	(4)	(5)	(6)	(7)
Program	Transfer	Target Population	Female	Child/Food	Goal of Framing	Description of Framing
ID	Туре	Target Topulation	Targetting	Framing	Goar of Franking	Description of Franking
1	Lump Sum	Micro-entrepreneurs aged 18-35 and	No		Business development	Participants had to submit business proposals
2	Starson	illiterate	V		L.	1 1
2	Lump Sum	Rural households with young children	Yes	Vac	Health Child development	Voluntary basic health advestion orientation program
4	Stream	Refugees	Randomized	103	Health, Child development	volunary base nearth education orientation program
5	Lump Sum	Farmers, rural	Randomized			
6	Luma Sum	A	No		Entrepreneurship/enterprise	Circus to business along with a business toriging
0	Europ Sum	Agricultural entrepreneurs	NU		development	Given to businesses along with a business training
7	Stream	Poor households with young children	Yes	Yes	Child development	Told the UCT was to support their child's development and to
0	0		D 1 1		1	prevent undernutrition
8	Stream	Rural households with school-age children	Randomized			Exmedited UCT delivery offer COVID 10 outbreak to againt
9	Stream	Poor households	Yes		COVID-19 emergency aid	the extreme poor
10	Stream	Urban Youth	80% women			
11	Store and	Households with young children with	V			
11	Stream	severe malnutrition	res			
12	Stream	Households with young children		Yes	Education, Child dev.	Promoted as a way to support the human capital of poor
		, ,				children
13	Lump Sum	Rural entrepreneurs aged 21-35	No		Entrepreneurship/enterprise	Transfers given to buseness loan applicants
14	Lump Sum	Urban micro-entrepreneurs			Micro-enterprise growth	Asked to spend money on their businesses
15	Lump Sum	Urban Microentroprenuers	80% women		Business Development	Transfers given to micro-entrepreneurs
16	1			37	E i i i	Individualized deliverty based on farmers' preferences and
10	Lump Sum	Farmers, rurai		res	Farm investment	uses for grant
17	Stream	Poor households	Yes			
						Transfers given to pregnant mothers along with messaging in
18	Stream	Mothers	Yes	Yes	Health, child development	the form of flyers and automated calls encouraging
						mother and child
19	Lump Sum	Micro-entrepreneurs			Micro-enterprise growth	Encouraged to invest money in their business
20	Lump Sum	Elderly, living alone	Yes			
21	Lump Sum	Farmers, rural				
22	Lump Sum	Female micro-entrepreneurs	Yes			
23	Lump Sum, Stream	Poor households, rural				
24	Stream	Households with vulnerable children		Yes	Child support	Told the money is to be used for the care of vulnerable
25	Lump Cum Steam	Deep have shalle morel	Dandamigad			children
25	Lump Sum	Poor households, rural	Kanuonnizeu			
27	Lump Sum, Stream	Poor households, rural				
28	Lump Sum	Poor or widowed, rural households	Yes			
29	Stream	Poor households		Yes	Food security	Labelled: "Hunger Safety Net Programme"
30	Lump Sum	Informal workers, urban				
31	Lump Sum	Young, poor women, urban	Yes			
32	Lump Sum	Households with daughters	No	Yes	Education	Messaging around the transfer states that the transfer is meant
22	Stream	Poor households with uninerable children		Vac	Child support	Instructed to spend the money on children
34	Lump Sum, Stream	Poor households, rural	77% women	103	China support	histrated to spend the money on emilaten
35	Lump Sum	High-risk men (Criminally Engaged)				
26	Stagon	Usershalds with some shildson	Vaa	V	Child Development	Mother Leaders groups give "nudges" on intervention days
30	Sucalli	Households with young children	ICS	res	Child Development	regarding child development
37	Lump Sum	Poor households, rural	77% women			
38	Lump Sum	Poor Farmers	No		Agriculture	Given to farmer clubs
39	Stream	Ultra-poor, labour-constrained households	Yes	Yes	Education, Food security	and household necessities
40	Stream	Adolescent girls, parents, poor region	Yes			and nouschold necessities
41	Lump Sum	Rural Households	Yes		Agriculture	Given to farmers during planting time
42	Stagon	Door households men		Vas	Livelihoode Edu, Child day	Voluntary ctivities related to livelihoods, education, child
42	Sucan	r oor nousenolds, men		103	Elvenhoous, Euu., Child dev.	health and nutrition, etc.
43	Stream	Elderly	No			
44	Stream	Poor households, rural	Yes	Yes	Health, Child Development	Health, nutrition, and hygiene classes
45	Stream	rural	Randomized	Yes	Education	Promoted as for supporting child education
46	Lump Sum	Micro-entrepreneurs			Micro-enterprise growth	Instructed to spend the money on their business
47	Stream	Households with young children	Yes		, 0	, interview submess
48	Stream	Households with pregnant mothers or	Vac	Vac	Child Development	Transfers given to mothers of young children alongside
-10	Savani	children under 2 years old	105	105	cana bevelopment	messaging about child health
49	Stream	Poor households, rural	Yes			
50	Stream	Extremely vulnerable households	res			
51		Households with young children and in				
52	Stream	extreme poverty	Yes	Yes	Child development	Information provided on pre-natal health and infant feeding
53	Stream	Poor households with young children				
54	Stream	Elderly	No			
55	Lump Sum, Stream	Young, poor, underemployed adults				
56	Lump Sum	y oung, poor, underemployed adults				Transfere sitter alongside from a second site
57	Lump Sum	Farmers	No		Agriculture	agricultural advisory visits
58	Lump Sum	Poor women, post-conflict				
59	Lump Sum	Micro-entrepreneurs	Randomized			
60	Lump Sum	vulnerable groups, (widowed, disabled,	No			
00	_and Sum	elderly)	110			
61	Stream	Households with young children, rural	Yes	Yes	Child development	Case management of child illness and malnutrition (also
62	Lump Sum	Door much women	Vaa		Fomala Financial Davida	Transfere given alongside and the second
63	Lump Sum	Four rural women Households with exactly one shild aged 2.5	Yes		Rusiness development	Transfers labeled as a business grant
64	Lump Sum	Poor farmers, rural	105		Business development	ransiers iaucicu as a dusiness grain
65	Lump Sum	Businesses	No		Business development	Given to businesses
66	Lump Sum	Refugee Communities	75% women			
67	Lump Sum	Micro Enterprises	No		Business Development	Given to businesses
68	Lump Sum	Poor households				
69	Stream	Households with young children	Yes	Yes	Child development	UCTs provided at UNICEF-supported early childhood
						Dequired to submit business areat area 1 - for a i
70	Lump Sum	Young adults, post-conflict			Micro-enterprise growth	transfer
71	Stream	Households with young children, rural	Yes	Yes	Child support	Labelled: "Child Grant Program"
72	Stranm	Households with vulnerable adults and	Vaa			-
12	Jucani	1.11	res			

children, poor region
Specific citations associated with each Program ID reported in Table A.1.

Appendix Table B.1 Standardization of Reported Food Security Outc

(1)		(2)	(1)	(5)	Standardization of Reported Food Security Outcomes		(0)	(0)	(10)
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
Program ID	Disbursement Schedule	Total Transfer Amount	Monthly Tranche Amount	Months Since First Transfer	Reported Outcome	Reported Units	Unstandardized Treatment Effect (TE)	Control Group Mean	Standardized TE
2	Stream	1 392	61	23	Household Hunger Scale	Binary	0.04(0.02)	09(03)	0.13(0.07)
	Stream	420	42	23	Household Food Insecurity Acces Scale	Score	0.2 (0.35)	3 5 (3 85)	0.05(0.09)
10	Stream	160	80	2	Food security index	Standard deviations	0 (0.03)	0 (1)	0 (0.03)
17	Lump Sum	795	33	2	Household reports missing a meal in last 12 months	Davs	0.08 (0.04)	0.77(0.42)	0.19(0.09)
21	Lump Sum	35	69	1	Food sequrity (skinned meal)	Binary	-0.01 (0.06)	0.77(0.42)	-0.02 (0.14)
21	Lump Sum	25	14	2	Food security (skipped meal)	Dinary	-0.01 (0.00)	0.22(0.42)	-0.02(0.14)
22	Pooled (Lump Sum & Stream)	45	2	24	Experienced Hunger	Binary	-0.02 (0.02)	0.84 (0.37)	-0.05 (2.51)
24	Pooled (Lump Sum & Stream)	958	68	14	Food security index	Standard deviations	0.14 (0.06)	0 (1)	0.14 (0.06)
26	Stream	384	43	11	Food security index	Standard deviations	0.4 (0.12)	0(1)	0.4 (0.12)
26	Stream	384	43	36	Food security index	Standard deviations	-0.06 (0.12)	0(1)	-0.06 (0.12)
26	Stream	1,449	181	36	Food security index	Standard deviations	-0.04 (0.14)	0(1)	-0.04 (0.14)
26	Lump Sum	384	53	7	Food security index	Standard deviations	0.14 (0.11)	0(1)	0.14 (0.11)
26	Stream	1,449	181	10	Food security index	Standard deviations	0.43 (0.12)	0(1)	0.43 (0.12)
26	Lump Sum	384	11	36	Food security index	Standard deviations	-0.03 (0.1)	0(1)	-0.03 (0.1)
28	Stream	3,940	197	27	Experienced Hunger	Binary	0.05 (0.02)	0.32 (0.47)	0.11 (0.04)
28	Stream	3,937	197	27	Experienced Hunger	Binary	0.11 (0.02)	0.32 (0.47)	0.24 (0.04)
28	Lump Sum	4,356	161	27	Experienced Hunger	Binary	0.06 (0.02)	0.32 (0.47)	0.13 (0.04)
31	Lump Sum	321	28	12	Times went hungry in past month	Days	0.14 (0.04)	0.19 (0.58)	0.24 (0.07)
35	Stream	211	12	20	Food Security Index	Standard deviations	0.29 (0.07)	0(1)	0.29 (0.07)
35	Lump Sum	422	21	20	Food Security Index	Standard deviations	0.21 (0.07)	0 (1)	0.21 (0.07)
35	Lump Sum	632	32	20	Food Security Index	Standard deviations	0.52 (0.07)	0(1)	0.52 (0.07)
35	Lump Sum	211	11	20	Food Security Index	Standard deviations	0.09 (0.07)	0(1)	0.09 (0.07)
35	Stream	632	35	20	Food Security Index	Standard deviations	0.42 (0.07)	0(1)	0.42 (0.07)
35	Stream	422	23	20	Food Security Index	Standard deviations	0.35 (0.07)	0(1)	0.35 (0.07)
37	Stream	998	55	18	Food Insecurity Score (mean number of days experienced seven types of food insecurity)	Score	-0.21 (0.24)	6.06 (0.14)	-1.5 (1.71)
38	Lump Sum	516	22	23	Household Hunger Score (nast month)	Score	0.13 (0.06)	0.95 (1.28)	0.1 (0.05)
38	Lump Sum	1.032	45	23	Household Hunger Score (past month)	Score	0.18 (0.06)	0.95 (1.28)	0.14 (0.05)
38	Lump Sum	1 549	67	23	Household Hunger Score (past month)	Score	0.17 (0.07)	0.95 (1.28)	0.13 (0.05)
40	Stream	177	15	12	Fate more than 1 meal ner day	Binary	0.11 (0.03)	0.88 (0.34)	0.32 (0.09)
40	Stream	407	17	24	More than 1 meal/day	Binary	0.14 (0.03)	0.82 (0.34)	0.32 (0.09)
44	Stream	756	63	24	Food availability index	Standard deviations	0.67 (0.11)	0.02 (0.57)	0.55(0.03)
44	Stream	892	63	14	Food availability index	Standard deviations	0.07 (0.11)	0(1)	0.42 (0.11)
50	Stream	1.006	42	24	Moderate or severe food Insecurity	Binary	0.07 (0.04)	0.59 (0.40)	0.13 (0.09)
53	Stream	474	72	48	Whather shild did not have enough food	Binary	0.1 (0.04)	0.83 (0.37)	0.15 (0.05)
52	Stream	474	20	-10	Whether child did not have enough food	Binary	0.05 (0.02)	0.83(0.37)	0.20(0.03)
59	Lump Sum	1,313	109	12	whence chind and not have enough food rood security composite z-score (going a day without eating, going to steep nungry, being without any food in the house, eating fewer meals than normal at mealtimes, limiting	Standard deviations	0.03 (0.11)	-0.01 (1)	0.03 (0.11)
62	Stream	460	19	24	Severely food insecure	Binary	0.11 (0.04)	0.99 (0)	0.28 (0.11)
63	Lump Sum	667	25	27	Extreme coping strategy (dummy equal to one if the household reduced the number of meals, took children out of school or fostered children to friends to face a shock)	Binary	0.03 (0.01)	0.88 (0.33)	0.09 (0.02)
64	Lump Sum	279	23	12	Household food-insecurity (past 7 days)	Binary	0.19 (0.1)	0.61 (0.49)	0.39 (0.21)
65	Lump Sum	2,571	143	18	Food Security index	Standard deviations	0.47 (0.08)	0(1)	0.47 (0.08)
67	Lump Sum	2,406	117	21	Food Security Index	Standard deviations	0.09 (0.08)	0(1)	0.09 (0.08)
69	Lump Sum	242	12	21	Nutrition index (Household Dietary Diversity Score and the inverse of the Household Food Insecurity Access Score)	Standard deviations	0.02 (0.05)	0 (1)	0.02 (0.05)
72	Stream	821	23	36	Food security scale	Standard deviations	0.54 (0.1)	0(1)	0.54 (0.1)
72	Stream	1,094	23	48	Meal frequency (3 or more indicator)	Binary	0.18 (0.05)	0.23 (0.42)	0.44 (0.12)
72	Stream	1,102	20	82	HFIAS	Standard deviations	0.04 (0.13)	0(1)	0.04 (0.13)
72	Stream	547	23	24	HFIAS	Standard deviations	0.41 (0.1)	0(1)	0.41 (0.1)
Standard er	rors reported in pare	ntheses All cur	rency values are re	eported in 2010 I	USD PPP Specific citations associated with each Program ID reported in Table A.1. Standardized treatment effects	in Column 10 are calculate	d by dividing the unsta	ndardized treatme	ent effect in

Column 8 by the control group mean standard error in Column 9. All values have been transformed if necessary so that higher values represent greater food security and lower values represent less food security.

Appendix Table B.2	
--------------------	--

					Standardization of Reported Psychological Well-being Outcomes				
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)
				Months					
Program	Disbursement	Total	Monthly	Since			Unstandardized	Control	Standardized
ID	Schedule	Transfer	Tranche	First	Reported Outcome	Reported Units	Treatment Effect	Group Mean	TE
iD	Schedule	Amount	Amount	Transfer			(TE)	Group Mean	1L
				Transfer					
3	Lump Sum	15	1	12	Maternal self-esteem (Rosenberg 30 point scale)	Standard Deviations	0.32 (0.1)	0 (0)	0.32 (0.1)
5	Stream	100	50	3	Psychosocial Well-being Index	Standard Deviations	0.06(0.05)	0.(1)	0.06(0.05)
5	Sucan	100	50	5	r sychosocial weil-being index	Standard Deviations	0.00 (0.05)	0(1)	0.00 (0.05)
					Stress score (Enisodes of the following negative emotions during the seven days before the				
6	Lumn Sum	87	5	16	survey: nervousness anger worry cadness inability to sleen shame frazzled at not having	Score	-0.27 (0.12)	6 91 (6 77)	-0.04(0.02)
0	Lump Sum	07	2	10	enough time to do all the subsistence and household chores needed and envy (adults))	Beore	-0.27 (0.12)	0.91 (0.77)	-0.04 (0.02)
					enough time to do un the subsistence and nousenoid enores needed, and enty (datas)).				
					Stress score (Episodes of the following negative emotions during the seven days before the				
6	Lump Sum	29	2	16	survey: nervousness, anger, worry, sadness, inability to sleep, shame, frazzled at not having	Score	-0.28 (0.14)	6.91 (6.77)	-0.04 (0.02)
					enough time to do all the subsistence and household chores needed, and envy (adults)).		•=== (•••••))
10		1.00	00	2		0. 1 1D 1.	0.02 (0.02)	0 (1)	0.02 (0.02)
10	Stream	160	80	2	Household mental health index	Standard Deviations	0.03 (0.03)	0(1)	0.03 (0.03)
11	Stream	2,742	685	12	Depression, Well-Being, Trust Index	Standard Deviations	0.07(0.1)	0(1)	0.07(0.1)
				10					
11	Stream	1,371	685	12	Depression, Well-Being, Trust Index	Standard Deviations	0.06 (0.08)	0(1)	0.06 (0.08)
13	Stream	812	35	23	Mother's depressive symptoms score	Score	-0.71 (0.79)	18.9 (10.6)	-0.07 (0.07)
13	Stream	617	36	15	Depressive Symptoms Index	Standard Deviations	0.09 (0.13)	0(1)	0.09 (0.13)
							((,
14	Lump Sum	682	43	16	Mental Health Index	Standard Deviations	0.05 (0.07)	0 (1)	0.05 (0.07)
14	Lump Sum	682	43	16	Mental Health Index	Standard Deviations	0.11 (0.08)	0 (1)	0.11 (0.08)
								• (-)	
19	Stream	242	22	11	Depression Index	Standard Deviations	0.08 (0.07)	3.19(0)	0.08 (0.07)
19	Stream	505	22	23	Depression Index	Standard Deviations	0.24 (0.16)	3.19(0)	0.24 (0.16)
• •	buttani				Depression mask		••=• (•••••)	0.117 (0)	
21	Lump Sum	35	14	3	Geriatric Depression Scale	Score	0.35 (0.53)	6.4 (4.59)	0.08 (0.11)
21	Lump Sum	35	69	1	Geriatric Depression Scale	Score	1.01 (0.54)	64(459)	0.22 (0.12)
21	Lump Sum	55	07		Schulle Depression Scale	Beore	1.01 (0.54)	0.4 (4.57)	0.22 (0.12)
24	Lump Sum	958	68	14	Psychological Wellbing Index	Standard Deviations	0.25 (0.08)	0(1)	0.25 (0.08)
24	Straam	958	824	14	Psychological Wellbing Index	Standard Deviations	0.22(0.07)	0.(1)	0.22 (0.07)
24	Sucan	,50	024	14	r sychological wending index	Standard Deviations	0.22 (0.07)	0(1)	0.22 (0.07)
25	Stream	2,322	48	48	CES-D depression scale greater than 10 (depressed)	Binary	0.05 (0.02)	0.63 (0.48)	0.1 (0.04)
26	Straam	1 449	181	36	Psychological wall being index	Standard Deviations	0.06(0.07)	0.(1)	0.06(0.07)
20	Sucan	1,449	101	50	rsychological well-being hidex	Standard Deviations	0.00 (0.07)	0(1)	0.00 (0.07)
26	Stream	384	43	36	Psychological well-being index	Standard Deviations	-0.06 (0.07)	0(1)	-0.06 (0.07)
26	Lumn Sum	284	53	7	Psychological wall being index	Standard Deviations	0.2 (0.08)	0.(1)	0.2 (0.08)
20	Lump Sum	304	55	/	rsychological well-being hidex	Standard Deviations	0.2 (0.08)	0(1)	0.2 (0.08)
26	Lump Sum	384	11	36	Psychological well-being index	Standard Deviations	-0.04 (0.08)	0(1)	-0.04 (0.08)
26	Ctuoom	284	43	11	Davahalasiaal wall hains inday	Standard Deviations	0.21 (0.1)	0 (1)	0.21 (0.1)
20	Sucan	564	45	11	rsychological well-being hidex	Standard Deviations	0.21 (0.1)	0(1)	0.21 (0.1)
26	Stream	1,449	181	10	Psychological well-being index	Standard Deviations	0.2 (0.08)	0(1)	0.2 (0.08)
20	I	1.042	102	10	Mandal Haalda a saara	Constant Designations	0.00 (0.02)	0 (1)	0.00 (0.02)
29	Lump Sum	1,942	102	19	Mental Health Z-score	Standard Deviations	0.09 (0.03)	0(1)	0.09 (0.03)
31	Lump Sum	321	28	12	Subjective Well-being Index	Standard Deviations	0.03 (0.09)	0 (0.92)	0.03 (0.09)
	Pooled								
25	(Luma Sum	211	11	20	Daviah alaginal Wall haing (most 2 weaks)	Standard Deviations	0.28 (0.06)	0 (1)	0.28 (0.06)
35	(Lump Sum	211	11	20	Psychological well-being (past 2 weeks)	Standard Deviations	0.28 (0.00)	0(1)	0.28 (0.00)
	& Stream)								
	Pooled								
35	(Lump Sum	422	21	20	Psychological Well-being (past 2 weeks)	Standard Deviations	0.36 (0.06)	0(1)	0.36 (0.06)
	& Stream)								
	Pooled								
35	(Lumn Sum	632	32	20	Psychological Well-being (past 2 weeks)	Standard Deviations	0.37 (0.05)	0.(1)	0.37 (0.05)
55	& Stream)	052	52	20	r sjenelogieur i en oeing (par 2 neens)	Standard Deviations	0.57 (0.05)	0(1)	0.57 (0.05)
	ce bireanij								
36	Lump Sum	200	16	13	Positive self regard/mental health index	Standard Deviations	-0.03 (0.09)	0(1)	-0.03 (0.09)
36	Lump Sum	200	246	1	Positive self regard/mental health index	Standard Deviations	0.14 (0.09)	0(1)	0.14 (0.09)
									. (,
38	Lump Sum	1,549	67	23	Psychological Well-being (past 2 weeks)	Standard Deviations	0.16 (0.06)	0(1)	0.16 (0.06)
38	Lump Sum	516	22	23	Psychological Well-being (past 2 weeks)	Standard Deviations	0.04 (0.06)	0 (1)	0.04 (0.06)
•••	Dump Dum				r sjenologiour (r en oenig (past 2 (reens))			• (-)	
38	Lump Sum	1,032	45	23	Psychological Well-being (past 2 weeks)	Standard Deviations	0.11 (0.06)	0(1)	0.11 (0.06)
40	Stream	266	15	18	Overall psychological state index	Standard Deviations	0.47 (0.09)	0.(1)	0.47 (0.09)
					- · · · · · · · · · · · · · · · · · · ·			• (-)	
40	Stream	177	15	12	Quality of Life Scale	Score	2.95 (0.48)	18.1 (6.8)	0.43 (0.07)
41	Stream	260	22	12	GHQ-12 Binary Measure of Psychological Distress	Binary	0.14 (0.04)	0.63 (0.48)	0.29 (0.09)
	<i>C</i> .					D'		0.00.00.00	0.00
41	Stream	521	22	24	GHQ-12 Binary Measure of Psychological Distress	Binary	0.04 (0.05)	0.69 (0.46)	0.08 (0.1)
43	Stream	342	14	24	Standardized stress index	Standard Deviations	0.19 (0.12)	0.02 (0.07)	0.19 (0.12)
	<u>.</u>		27	20		C	0.07 (0.02)	2.2 (0.02)	2.05 (0.05
51	Stream	552	37	30	Self Esteem based on Rosenberg scale	Score	0.07 (0.03)	5.3 (0.03)	2.05 (0.95)
51	Stream	552	37	30	Self Esteem based on Rosenberg scale	Score	-0.04 (0.02)	3.34 (0.03)	-1.45 (0.65)
						~	((,)	
52	Stream	309	52	6	Lite Satisfaction Index	Score	0.49 (0.19)	6.66 (2.3)	0.21 (0.08)
52	Stream	619	52	12	Life Satisfaction Index	Score	1.02 (0.29)	6 (3.22)	0.32 (0.09)
								. ()	(3.05)
55	Stream	2,131	178	12	Subjective Well-being Index	Standard Deviations	0.48 (0.03)	0(1)	0.48 (0.03)
57	Lump Sum	761	54	14	Subjective well-being index	Standard Deviations	0.4 (0.09)	0 (1)	0,4 (0.09)
51	2000p Sum		5.				0.1 (0.09)	0(1)	(0.07)
57	Lump Sum	1,795	128	14	Subjective well-being index	Standard Deviations	0.55 (0.09)	0(1)	0.55 (0.09)
57	Lump Sum	1.202	86	14	Subjective well-being index	Standard Deviations	0.48 (0.09)	0.(1)	0,48 (0.09)
51	2000p Sum	.,202					0.10 (0.09)	0(1)	
57	Lump Sum	983	70	14	Subjective well-being index	Standard Deviations	0.53 (0.1)	0(1)	0.53 (0.1)
63	Lump Sum	667	25	27	Current life satisfaction	Score	0.27 (0.06)	2.36 (1.47)	0.18 (0.04)
05	Lump Sum	007	23	21	Current me satisfication	50010	0.27 (0.00)	2.50 (1.47)	0.10 (0.04)
64	Lump Sum	279	23	12	Happiness with life score	Score	0.81 (0.16)	4.98 (2.45)	0.33 (0.07)
67	Lump Sum	2,406	117	21	Psychological Well-being index	Standard Deviations	0.28 (0.08)	0 (1)	0.28 (0.08)
01	2000p Suili	_,					0.20 (0.08)	0(1)	
69	Lump Sum	242	12	21	Psychological Outlook Index (Aggregate of subjective well-being, aspirations, self-control,	Standard Deviations	-0.11 (0.07)	0(1)	-0.11 (0.07)
					sense of control, sense of status, sense of pride)	Dematons	(0.07)	0(1)	(0.07)
71	Lump Sum	773	7	108	Mental health index	Standard Deviations	-0.06 (0.05)	0(1)	-0.06 (0.05)
		1.00.1				D		0.70 (1)	0.05 (0.00)
72	Stream	1,094	23	48	Feeling happy indicator	Binary	0.1 (0.02)	0.78 (0.41)	0.25 (0.05)
72	Stream	547	23	24	Considers self better off than 12 months ago	Binary	0.46 (0.04)	0.07 (0.26)	1.8 (0.17)
	<i>C</i> .	(20	20	2.0		0.1.15.1.1	0.01 (0.07)		0.01 (0.05)
72	stream	630	20	32	Quanty of life index	Standard Deviations	0.01 (0.02)	0(1)	0.01 (0.02)

 Standard
 Standard
 Device
 Standard
 Out (0.02)
 0 (1)
 0.01 (0.02)

 Standard
 errors reported in parentheses. All currency values are reported in 2010 USD PPP. Specific citations associated with each Program ID reported in Table A.1. Reported outcomes have been transformed when necessary so that higher values indicate greater food security.

 Standardzed transmer effects in Column 10 are calculated by dividing the unstandardized treatment effects in Column 8 by the control group mean standard error in Column 9. All values have been transformed if necessary so that higher values represent better psychological well-being and lower values represent worse psychological well-being.

Distribution of Months Since First and Last Transfer Per Disbursement Schedule								
	(1)	(2)	(3)					
	Stream-Ongoing	Stream-Ended	Lump Sum					
Number of Programs	29	17	32					
Number of Estimates	153	89	275					
Months Since First Transfer								
Mean	20	25	21					
Min	4	2	1					
20th percentile	12	12	12					
Median	23	21	18					
80th percentile	24	36	23					
Max	48	84	146					
Months Since Last Transfer								
Mean		12						
Min		0						
20th percentile		3						
Median		10						
80th percentile		20						
Max		66						

Appendix Table C stribution of Months Since First and Last Transfer Per Disbursement Sche

Six of the 32 lump sum programs were distributed in two or three installments within a month or two of each other. We ignore this distinction and treat the entire lump sum as transferred at the time of the first transfer.

	(1)	(2)	(3)
	Predicted Treatment Effect of \$100 Transfer	Predicted Treatment Effect of Median Transfer	Estimates (Programs)
Panel A. Treatment Effect per Total Transfer Amount			
Monthly Income (as reported in Table 3)	1.4	8.2	88
	(1, 1.9)	(5.7, 10.8)	(38)
Monthly Income (only using estimates on total income)	1.6	9.0	34
	(1, 2.1)	(6, 12.3)	(14)
Wage Earnings	1.1	6.2	8
	(-0.2, 2.3)	(-0.9, 13.4)	(6)
Non-Farm Enterprise Profits	0.9	5.4	55
	(0.5, 1.5)	(2.7, 8.4)	(21)
Agricultural Enterprise Profits	1.0	5.5	7
	(-0.2, 2.1)	(-1.1, 12.2)	(5)
All Household Enterprise Profits	0.1	0.7	7
	(-1, 1.2)	(-4.1, 5.2)	(7)
Panel B. Treatment Effect per Monthly Tranche Amount			
Monthly Income (as reported in Table 3)	22.6	8.2	88
	(15.4, 30.6)	(5.6, 11.1)	(38)
Monthly Income (only using estimates on total income)	23.9	8.7	34
	(14.7, 33.8)	(5.3, 12.3)	(14)
Wage Earnings	15.0	5.5	8
	(-4.3, 34.4)	(-1.6, 12.5)	(6)
Non-Farm Enterprise Profits	14.8	5.4	55
	(7, 22.9)	(2.5, 8.3)	(21)
Agricultural Enterprise Profits	17.9	6.5	7
	(-2.4, 38.9)	(-0.9, 14.1)	(5)
All Household Enterprise Profits	2.7	1.0	7
	(-15.3, 20.8)	(-5.6, 7.5)	(7)

Appendix Table D.1
Treatment Effects on Total Monthly Income: Alternative Income Measures

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for stream transfers. The median total transfer amount is \$575, which is calculated by taking the median of the average total transfer amounts of the 39 lump sum programs in our sample. The median monthly tranche amount is \$36, which is calculated by taking the median of the average monthly tranche amounts of the 37 stream programs in our sample. Our dataset for **Monthly Income** as reported in Table 3 uses reported treatment effects on total household or individual income when reported; if treatment effects are only reported by sub-category of income, e.g., wage earnings, non-farm enterprise profits, etc., then the sub-category with the highest control group mean is used instead. We compare this to analysis from a model that separately estimates parameters for total income (only using estimates reported on total household or individual income) and for various sub-categories of income. Effects with 4 or fewer estimates have been grayed out.

	(1)	(2)	(3)
	Predicted Treatment Effect	Predicted Treatment Effect	Estimates
	of \$100 Transfer	of Median Transfer	(Programs)
Panel A. Treatment Effect per Total Transfer Amount			
Stock of Total Assets (as reported in Table 3)	19.6	112.6	57
	(12.2, 27.3)	(70.1, 157.1)	(28)
Stock of Financial Assets	1.7	9.7	49
	(1.1, 2.3)	(6.4, 13.2)	(24)
Stock of Durable Assets	4.4	25.1	16
	(1.9, 6.9)	(11.1, 39.5)	(8)
Stock of Productive Assets	4.1	23.8	37
	(2.2, 6.8)	(12.4, 38.9)	(19)
Panel B. Treatment Effect per Monthly Tranche Amou	nt		
Stock of Total Assets (as reported in Table 3)	245.5	89.1	57
	(146.8, 352.9)	(53.3, 128.1)	(28)
Stock of Financial Assets	22.6	8.2	49
	(15.1, 30.4)	(5.5, 11)	(24)
Stock of Durable Assets	77.1	28.0	16
	(37.6, 117.8)	(13.7, 42.8)	(8)
Stock of Productive Assets	42.5	15.4	37
	(23.5, 64.1)	(8.5, 23.3)	(19)

Appendix Table D.2 Treatment Effects on Stock of Total Assets: Alternative Asset Measures

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for stream transfers. The median total transfer amount is \$575, which is calculated by taking the median of the average total transfer amounts of the 39 lump sum programs in our sample. The median monthly tranche amount is \$36, which is calculated by taking the median of the average monthly tranche amounts of the 37 stream programs in our sample. Effects with 4 or fewer estimates have been grayed out.

Appendix Table D.3
Treatment Effects per Monthly Tranche Amount on Psychological Well-being z-Scores:
Robustness to Inclusion of Zambia CGP Outlier

	(1)	(2)
	Predicted Treatment	Estimates
	Effect of \$100 Transfer	(Programs)
Panel A. Treatment Effect per Total Transfer Amount		
Psychological Well-being z-Score	0.03	56
	(0.02, 0.05)	(30)
Psychological Well-being z-Score (Full Sample without Zambia CGP)	0.03	53
	(0.02, 0.04)	(29)
Psychological Well-being z-Score (Ongoing Streams with Zambia CGP, as reported in Ta	0.07	15
	(0.04, 0.09)	(9)
Psychological Well-being z-Score (Ongoing Stream Programs without Zambia CGP)	0.05	12
	(0.03, 0.07)	(8)
Panel B. Treatment Effect per Monthly Tranche Amount		
Psychological Well-being z-Score (Full Sample with Zambia CGP, as reported in Table 3)	0.5	56
	(0.3, 0.7)	(30)
Psychological Well-being z-Score (Full Sample without Zambia CGP)	0.4	53
	(0.3, 0.5)	(29)
Psychological Well-being z-Score (Ongoing Streams with Zambia CGP, as reported in Ta	1.0	15
	(0.7, 1.4)	(9)
Psychological Well-being z-Score (Ongoing Stream Programs without Zambia CGP)	0.6	12
	(0.4, 0.9)	(8)

95% credibility intervals in parentheses. All currency values are reported in 2010 USD PPP. Treatment effect per total transfer amount (Panel A) is our preferred outcome variable for lump sum transfers. Treatment effect per monthly tranche amount (Panel B) is our preferred outcome variable for stream transfers. The Zambia Child Grant Program (CGP) is an ongoing stream program, so we only report results on ongoing streams from our Table 4 specification. Effects with 4 or fewer estimates have been grayed out.

Appendix Table E.1 Program Design Features by Outcome

			Per	centage by Targ	eting	Percentage by Ch	ild/Food Framing	Percentage by Tr	ansfer Modality	Percento	ige by Impi	lementer
		(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)
		Count of Estimates (Programs)	No Targeting	Female Targeting	Male Targeting	No Framing	With Framing	Mobile Money or Bank Transfer	Physical Cash	Government	NGO	Researcher
All P	rimary Outcomes	541	55.6%	39.9%	4.4%	75.8%	24.2%	59.7%	37.2%	25.7%	63.2%	11.1%
	,	(72)	(73.6%)	(44.4%)	(6.9%)	(73.6%)	(27.8%)	(52.8%)	(45.8%)	(30.6%)	(51.4%)	(20.8%)
Flow	Outcomes											
	Monthly Household Consumption	82	54.9%	39.0%	6.1%	78.0%	22.0%	36.6%	36.6%	26.8%	67.1%	6.1%
	Monthly Household Food Consumption	49	44.9%	53.1%	0.0%	67.3%	32.7%	55.1%	40.8%	36.7%	57.1%	6.1%
	Monthly Income	88	46.6%	45.5%	8.0%	86.4%	13.6%	54.5%	33.0%	14.8%	65.9%	19.3%
	Hours Worked per Week	25	56.0%	40.0%	4.0%	96.0%	4.0%	80.0%	20.0%	32.0%	60.0%	8.0%
	Labor Force Participation (percentage points)	17	35.3%	58.8%	5.9%	52.9%	47.1%	29.4%	58.8%	41.2%	52.9%	5.9%
	School Enrollment (percentage points)	26	53.8%	38.5%	7.7%	46.2%	53.8%	50.0%	50.0%	57.7%	38.5%	3.8%
	Food Security z-Score	46	50.0%	43.5%	6.5%	71.7%	28.3%	60.9%	39.1%	23.9%	63.0%	13.0%
	Psychological Well-being z-Score	56	46.4%	42.9%	10.7%	78.6%	21.4%	62.5%	37.5%	25.0%	62.5%	12.5%
Stock	Outcomes											
	Stock of Total Assets	73	53.4%	19.2%	5.5%	69.9%	8.2%	57.5%	20.5%	11.0%	54.8%	11.0%
	Stock of Financial Assets	49	73.5%	20.4%	6.1%	83.7%	16.3%	69.4%	30.6%	10.2%	79.6%	10.2%
	Height-for-Age z-Score	32	34.4%	65.6%	0.0%	50.0%	50.0%	40.6%	59.4%	34.4%	53.1%	12.5%
	Weight-for-Age z-Score	15	46.7%	53.3%	0.0%	53.3%	46.7%	53.3%	46.7%	46.7%	46.7%	6.7%
	Stunting (percentage points)	12	0.0%	100.0%	0.0%	8.3%	91.7%	25.0%	75.0%	50.0%	50.0%	0.0%

The sum of percentages by targeting, framing, modality, or implementer may exceed 100% for programs (in parentheses) because some programs randomize these design features across different treatment arms or let recipients select design features endogenously.

	Administrative Costs										
(1)	(2)	(3)	(4)	(5)	(6)	(7)					
Program ID	Country	Implementer-Treatment Arm	Disbursement Schedule	Administrative Cost	Transfer Amount	Admin. Cost / Transfer Amount					
28	Kenya	Give Directly (GD)- small	Lump sum, stream	153	664	23%					
28	Kenya	GD- large	Lump sum, stream	250	2,214	11%					
34	Kenya	International Rescue Committee (IRC)	Lump sum	177	493	36%					
38	Liberia	Innovations for Poverty Action (IPA)	Lump sum	16	200	8%					
44	Mali	IPA	Lump sum	130	140	93%					
48	Morocco	Government	Stream	19	167	11%					
58	Rwanda	GD- small	Lump sum, stream	62	104	60%					
58	Rwanda	GD- lower-middle	Lump sum, stream	69	211	33%					
58	Rwanda	GD- upper-middle	Lump sum, stream	72	295	24%					
58	Rwanda	GD- large	Lump sum, stream	87	1,341	6%					
59	Rwanda	GD- small	Lump sum	195	799	24%					
59	Rwanda	GD- lower-middle	Lump sum	210	1,035	20%					
59	Rwanda	GD- upper-middle	Lump sum	220	1,267	17%					
59	Rwanda	GD- large	Lump sum	243	1,891	13%					
67	Uganda	GD	Lump sum	683	2,651	26%					
71	Uganda	Village Enterprises	Lump sum	83	242	35%					
72	Uganda	World Food Programme (WFP)	Stream	65	186	35%					

Appendix Table E.2 Administrative Costs

Costs are reported in 2010 USD PPP per recipient household. Specific citations associated with each Program ID reported in Table A.1.

Appendix Table E.3a Reported Treatment Effects per \$100 Monthly Tranche, Stream UCT Program

				Reported Tre	atment Effects	s per \$100 Mon	thly I ranche-	Stream UC1	Programs			
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	(11)	(12)	(13)
		Months			Monthly	Monthly			Labor Force	School		
Program	Monthly	Since	Completion	TE Reported	Household	Household	Monthly	Hours	Participation	Enrollment	Food Security	Psychological
ID	Tranche	First	Status	by Sub-	Total	Food	Income	Worked	(percentage	(percentage	z-Score	Well-being
	Amount	Transfer		group Only	Consumption	Consumption		per Week	points)	points)		z-Score
		Transfer			consumption	consumption			pointo)	points)		
2	60.5	23	Completed	North								
2	60.5	23	Completed	South								
6	49.5	3	Completed	3								0.1 (0.1)
6	49.5	4	Completed	3								
9	42.0	24	Completed	5				01(01)			0.1 (0.21)	
10	10.4	12	Completed	6		23 2 (21 3)		0.1 (0.1)		60.3 (60.3)	0.11 (0.21)	
10	10.4	24	Completed	6		23.2 (21.3)				102.5(102.5)		
10	10.4	24	Completed	0	0 ((0 2)				0.5 (0.5)	102.3 (102.3)		0 (0.04)
11	80.1	2	Completed	/	0.6 (0.3)				0.5 (2.5)			0 (0.04)
12	685.5	12	Completed	55	1 (0.4)		5.9 (6.3)					
12	685.5	12	Completed	55				0 (0)				0 (0.01)
12	685.5	12	Completed	55			-1.3 (3.5)					
12	685.5	12	Completed	55				0 (0)				0 (0.01)
12	685.5	17	Completed	55			1.6 (1.9)					
12	685.5	21	Completed	55			0.9 (0.8)	0 (0)				
13	67.6	6	Completed	8								
14	35.3	23	Completed	9								-0.2 (0.21)
14	36.3	15	Completed	0								0.2 (0.21)
14	30.5	1.0	Completed	9				0.2 (0.2)		17.1 (17.1)		0.5 (0.50)
14	30.3	18	Completed	9				-0.2 (0.2)		17.1 (17.1)		
14	36.3	19	Completed	9				0.3 (0.4)		29.5 (29.5)		
19	63.4	12	Completed	12	0.2 (0.1)							
20	22.0	11	Completed	59	0.3 (0.1)							0.4 (0.32)
20	22.0	23	Completed	59		122.8 (62.8)						1.1 (0.73)
20	22.0	38	Completed	59		7.6 (2.5)		0.4 (0.3)				
25	823.6	14	Completed	17		10.6 (2.5)		1.1(0.7)				0 (0.01)
26	48.4	48	Completed	18								0.2 (0.09)
26	52.9	24	Completed	18		9 (2 4)		0.00		38(38)		. (,
20	42.6	11	Completed	10		> (2.1.)		0.2(0.1)		510 (510)	0.9 (0.28)	0.5(0.23)
27	42.6	26	Completed	10	0.(0)			0.2 (0.1)			0.1 (0.28)	0.1 (0.16)
27	42.0	30	Completed	19	0(0)	20.0 (10.0)		0.5 (0.2)			-0.1 (0.28)	-0.1 (0.16)
27	181.1	10	Completed	19		38.8 (19.8)		0.5 (0.2)			0.2 (0.07)	0.1 (0.04)
27	181.1	36	Completed	19		35.7 (32.2)		-0.1 (0.2)			0 (0.08)	0 (0.04)
29	168.7	27	Completed	21		21.2 (5.4)	-3.1 (3.2)	0.1 (0)				
29	195.2	27	Completed	21		7.2 (8.1)	-6 (2.7)	0 (0)				
29	196.9	20	Completed	21			-8.8 (4.7)					
29	196.9	27	Completed	21							0.1 (0.02)	
29	197.0	20	Completed	21			10.6 (7.6)					
29	197.0	27	Completed	21							0.1 (0.02)	
31	34.8	12	Completed	22							. ()	
31	34.8	24	Completed	22						-34.5 (-34.5)		
25	22.2	24	Completed	22		05.7(41.4)				-54.5 (-54.5)		
25	52.2	24	Completed	25	0.2 (0.2)	10.2 (7.5)				16600		
35	53.1	24	Completed	25	-0.3 (0.2)	19.3 (7.5)			0.45 (01.5)	10.0 (10.0)		
35	59.2	24	Completed	25					-8.45 (21.5)			
36	11.6	20	Completed	26	0.2 (0.1)	33.7 (21.5)					2.5 (0.6)	
36	11.7	20	Completed	26			16.2 (21)					
36	23.2	20	Completed	26							1.5 (0.3)	
36	23.4	20	Completed	26		31.2 (22)	3.3 (6.5)					
36	34.8	20	Completed	26								
36	35.1	20	Completed	26		22.1 (9.2)					1.2 (0.2)	
38	55.5	18	Completed	62		()	14(52)				(.)	
41	10.7	24	Completed	29		227(55)	111 (0.2)					
41	14.9	12	Completed	20		22.7 (3.3)				81 2 (81 2)		2 9 (0 49)
41	14.0	12	Completed	29						01.2 (01.2)	27(2.00)	2.7 (0.48)
41	14.8	18	Completed	29	0.0 (0.1)		00.5 (25.3)	0.0 (0.7)			-2.7 (3.09)	3.2 (0.61)
41	17.0	12	Completed	29	0.8 (0.1)		98.7 (27.9)	2.9 (0.5)				
41	17.0	24	Completed	29				3.2 (0.6)		71.9 (71.9)	2.2 (0.6)	
41	20.4	24	Completed	29		75.6 (52.9)			10.77 (13.09)			
42	21.7	12	Completed	30	0.7 (0.3)	187.6 (45.1)				13.8 (13.8)		1.4 (0.4)
42	21.7	24	Completed	30						0 (0)	2.1 (0.49)	0.3 (0.47)
42	21.8	48	Completed	30	0.1 (0.1)	87.9 (32.4)		1.4 (0.4)				
44	14.1	24	Completed	31	0 (0.2)	-14 (54.2)		0.3 (0.5)	19.85 (19.14)	13.5 (13.5)		1.4 (0.84)
44	14.3	24	Completed	31	. /	. /		· · /		()		
44	42.3	24	Completed	31	0.1 (0.1)			1.4 (0.8)		-0.9 (-0.9)		
45	62.0	14	Completed	25	0.1 (0.1)	250.0 (150)		1.7 (0.0)		0.7 (-0.7)		
45	(2.0	14	Completed	03	0 (0 1)	239.9 (159)						
45	63.0	26	Completed	65	0(0.1)							
46	23.2	12	Completed	32		-5.9 (4.9)				6.9 (6.9)		
46	24.2	84	Completed	32		0.1 (5.2)					0.7 (0.17)	
47	45.3	18	Completed	33	0.1 (0.2)	110.4 (100)				16.3 (16.3)	1.1 (0.18)	
49	19.9	30	Completed	35								
49	24.7	30	Completed	35	0.2 (0)							
50	23.8	4	Completed	66		72.6 (24.1)						
51	41.9	24	Completed	36								
52	36.8	30	Completed	67		-8.4 (80.5)						-3.9 (1.76)
52	36.8	30	Completed	Female		48.8 (24)	155 1 (88)					56(2.58)
52	51.5	50	Completed	Mal-		40.0 (24)	18.0 (27)	20(10)	6 00 (2 22)		0.2 (0.21)	0.4 (0.10)
55	31.5	0	Completed	Male			-10.9 (27)	-5.9 (1.8)	0.98 (3.32)		0.5 (0.21)	0.4 (0.16)
53	51.5	12	Completed	37				5.6 (2.6)	10.48 (2.55)			0.6 (0.17)
54	19.9	24	Completed	38		-20 (6.6)		0.4 (0.2)				
54	20.3	12	Completed	38		6 (1.3)	40 (23.7)	0.6 (0.2)				
54	20.3	24	Completed	38			112 (17.4)					
54	20.3	24	Completed	38		51.4 (46.8)			29.61 (9.38)			
54	20.3	24	Completed	Female					1.48 (0.99)			
									/			

All currency values reported in 2010 USD PPP. Standard errors reported in parentheses. Specific citations associated with each Program ID reported in Table A.1.

	Appendix Table E.3b								
(1)	(2)	(2)	d Treatment l	Effects per \$10	0 Monthly Ti	ranche- Stream	UCT Progra	(0)	(10)
(1)	(2)	(3)	(4)	(3)	(6)	(\prime)	(8)	(9)	(10)
Program ID	Monthly Tranche Amount	Months Since First Transfer	Completion Status	TE Reported by Sub-group Only	Stock of Total Assets	Stock of Financial Assets	Height-for- Age z-Score	Weight-for- Age z-Score	Stunting (percentage points)
50	60.5	23	Completed	North			0.06 (0.14)		
50	60.5	23	Ongoing	South			-0.17 (0.14)		
6	49.5	3	Completed			66(32)			
9	42.0	24	Ongoing			0.0 (3.2)	0(0)		
10	10.4	12	Ongoing		1.4 (57.9)		1.82 (1.83)	1.45 (114.6)	
10	10.4	24	Ongoing		13.2 (62)		-1.11 (1.66)	-1.94 (148.6)	
11	80.1	2	Completed		120.0 (0())	0777 (16466)			
12	685.5	12	Completed		130.9 (86)	8/7.7 (1646.6)			
12	685.5	12	Completed		-10.7 (19.3)	8.4 (99.9)			
12	685.5	12	Completed			~ /			
12	685.5	17	Completed		44.2 (46.1)	2.2 (1.3)			
12	685.5	21	Completed		9.8 (3.4)	-0.8 (0.5)	0.01 (0.02)	0.12 (4)	
13	67.6	6 23	Ongoing				-0.01(0.03) 0.03(0.27)	0.13 (4)	
14	36.3	15	Ongoing				0.03 (0.27)		
14	36.3	18	Ongoing						
14	36.3	19	Ongoing						
19	63.4	12	Ongoing				0.00 (0.00)		0.0 (0.1)
20	22.0	23	Ongoing				0.02 (0.23)	0.01 (18.2)	-0.9 (9.1)
20	22.0	38	Completed				0.27 (0.23)	0.18 (18.2)	1.4 (9.1)
25	823.6	14	Completed		32.6 (5.6)				(,)
26	48.4	48	Ongoing						
26	52.9	24	Ongoing		(21.0.(05.0)				
27	42.6	11	Completed		621.8 (87.6)	`			
27	181.1	10	Completed		3157 (267))			
27	181.1	36	Completed		234.5 (38)				
29	168.7	27	Completed						
29	195.2	27	Ongoing						
29	196.9	20	Ongoing						
29	190.9	27	Ongoing						
29	197.0	27	Ongoing						
31	34.8	12	Ongoing						
31	34.8	24	Ongoing						
35	52.2 53.1	24	Completed			-11.9 (12.8)			
35	59.2	24	Ongoing			11.5 (12.0)			
36	11.6	20	Completed						
36	11.7	20	Completed						
36	23.2	20	Completed						
36	34.8	20	Completed						
36	35.1	20	Completed						
38	55.5	18	Ongoing						
41	10.7	24	Ongoing						
41	14.8	12	Ongoing						
41	17.0	12	Ongoing						
41	17.0	24	Ongoing						
41	20.4	24	Ongoing						
42	21.7	12	Ongoing				0.7 (0.52)	0.09 (40.5)	11.0 (20.1)
42	21.7	24 48	Completed				-0.7 (0.53)	0.08 (48.5)	11.8 (28.1)
44	14.1	24	Ongoing						
44	14.3	24	Ongoing						
44	42.3	24	Ongoing				0.3 (0.81)		
45	63.0	14	Ongoing		212 2 (102 7)				
45	23.2	12	Ongoing		212.2 (103.7))			
46	24.2	84	Completed						
47	45.3	18	Completed						
49	19.9	30	Ongoing				0.4	0.05 //	
49	24.7	30	Ongoing				-0.45 (0.56)	-0.02 (40.9)	
50	23.8 41.9	4 24	Ongoing						
52	36.8	30	Completed	Female			-0.07 (0.17)		-1.6 (8.5)
52	36.8	30	Completed	Male			-0.31 (0.42)	0.04 (29.4)	2.9 (11.3)
53	51.5	6	Ongoing		0 (0)				
53	51.5	12	Ongoing						
54	20.3	12	Ongoing			52 (9.7)			
54	20.3	24	Ongoing			66 (11.3)			
54	20.3	24	Completed	Female					
54	20.3	24	Completed	Male			1.27(0.53)		

All currency values reported in 2010 USD PPP. Standard errors reported in parentheses. Specific citations associated with each Program ID reported in Table A.1.

(1)	(2)	(3)	(4) Report	ed Treatment	Effects per 100	USD Total Tra (7)	(8)	um UCT Progra	ms (10)	(11)	(12)
(1)	(2)	(3)	(+)	(.)	(0)	(/)	(0)	())	Labor Force	School	(12)
Program	Total Transfer	Months Since First	TE Reported by Sub-group	Monthly Household	Monthly Food	Monthly	Food Security	Hours Worked	Participation	Enrollment	Psychological Well-heing
ID	Amount	Transfer	Only	Consumption	Consumption	Income	z-Score	per Week	(percentage	(percentage	z-Score
1	1717	23				11.8 (1.7)			points)	points)	
3	15	12				11.0 (1.7)					2.12 (0.69)
7	29	16									-0.14 (0.07)
7	87	16									-0.05 (0.02)
8	8484	9	Famala			-0.6 (0.2)		11(0.2)	31(0.4)		0.01 (0.01)
15	682	16	Male					-0.8 (0.3)	0 (0.4)		0.02 (0.01)
15	825	16	Female	-4.3 (7.3)		4.3 (1.6)		0.0 (0.5)	0 (0.1)		0.02 (0.01)
15	825	16	Male	3.5 (13.3)		-0.5 (4.7)					
16	300	2				-14.6 (14.2)					
16	300	8						0.3 (0.8)			
16	300	14	Famala			-37.3 (20.2)					
17	284	3	Male			3.2 (9.5)					
17	284	6	Female			-0.1 (6.5)					
17	284	6	Male			10.1 (10.8)					
17	284	6	Male			7.9 (12.7)					
17	284	9	Female			1.5 (7.8)					
17	284	11	Female	6.3 (2.4)	10.3 (6.6)						
17	284	12	Famala	3.4 (2.7)	10.6 (8.4)	6 2 (10 2)					
17	284	12	Male			36.2 (13.1)					
17	284	34				14.2 (16.6)					
18	795	24		0.1 (1.2)		1.3 (1.8)	0.02 (0.01)				
21	300	12				9.4 (6.8)					
22	35	1					-0.07 (0.41)				0.64 (0.34)
22	35	3				0.0 12 5	-0.7 (0.37)				0.22 (0.33)
24	98	14		3.6 (2.9)	5.6 (2.9)	9.8 (2.5)					0.02 (0.01)
23	384	7		5.7 (2.6)			0.04 (0.03)				0.05 (0.01)
27	384	9		(=)		0 (0.9)	. ()				
27	384	27		6.6 (4)		. ,	-0.01 (0.03)				-0.01 (0.02)
28	1723	11		1.3 (0.3)	0.3 (0.2)	0.4 (0.2)					
29	4,336	20				0.3 (0.2)					
29	4356	27		10.00		0 (0.1)	0 (0)				A (A)
30	321	17		1.2 (0.3)	3 (4.0)	0.8 (0.3)	0.08 (0.02)				0 (0)
33	480	9		0.5 (14.7)	-3 (4.9)	24.0 (22.3)	0.08 (0.02)		0.5 (1)		0.01 (0.03)
33	480	18							1.2 (0.9)		
33	516	9				5.7 (2.1)					
33	516	18				-0.1 (2.2)					
34	294	1								2.6 (0.5)	
36	211	20		0.3 (1.2)	-0.8 (0.5)	1.2 (1.2)	0.04 (0.03)				
36	422	19		1.7 (0.5)	0.5 (0.3)	0.6 (0.4)	0.05 (0.02)				
36	200	10		0.8 (0.3)	0.2 (0.2)	-0.1 (0.3)	0.08 (0.01)				0.07 (0.05)
37	200	13		-28(39)		29(36)		03(13)			-0.02 (0.05)
39	516	23		0 (0.3)	-0.1 (0.3)	1 (0.5)	0.02 (0.01)	0.01 (0.03)		-0.4 (0.2)	0.01 (0.01)
39	1032	22		0.1 (0.2)	0.2 (0.2)	-0.1 (0.2)	0.01 (0)	-0.01 (0.01)		-0.1 (0.1)	0.01 (0.01)
39	1,549	21		0.1 (0.1)	0.2 (0.1)	0.1 (0.2)	0.01 (0)	-0.01 (0.01)		-0.1 (0.1)	0.01 (0.004)
40	204	4				0.5 (0.1)					
40	225	4		48.1 (20)	30 (18.2)						
40	225	10		19.1 (18.8)	28.7 (16.9)	0.2 (1)					
43	285	24		2.4 (1.1)	1.1 (0.5)	37(11)					
43	285	84				-0.3 (2)					
57	204	12		4.7 (10.5)							
57	1,341	12		3.1 (1.6)							
58	761	12									0.05 (0.01)
58	801	12		3 (1.2)		1.9 (0.9)					0.04 (0.04)
58	965	12		3.1.(1)		21(07)					0.05 (0.01)
58	1202	12		5.1 (1)		2.1 (0.7)					0.04(0.01)
58	1,265	12		2.2 (0.7)		1.8 (0.6)					0.04 (0.01)
58	1795	12									0.03 (0.01)
58	1,890	12		2.3 (0.4)		0.8 (0.4)					
59	379	9									
59	379	21		0.0.000	0.0.00	0.00	0.000				
60	1313	12	Essels	0.6 (0.3)	0.2 (0.1)	0 (1.6)	0 (0.01)				
61	263	12	Male			4.3 (1.9)					
61	263	24	Female			1.4 (3)					
61	263	24	Male			4.2 (2.7)					
61	263	36	Female			0 (2.9)					
61	263	36	Male			5 (2.7)					
61	263	66 66	remale			-1.9 (3.1)					
62	529	16	wiate	0.5 (0.6)	0.3 (0.4)	8.1 (4.1)					
64	667	27		(0.0)	(0.1)	(0.1)	0.01 (0)	0 (0.1)			0.03 (0.01)
64	708	27		13.9 (5.8)	8.4 (2.5)	5.4 (4.7)	(0)	. (0.1)			()
65	279	5					0.14 (0.07)	2.7 (1.4)	2.2 (1.1)	-0.4 (0.7)	0.12 (0.02)
65	293	5		9.1 (3.7)	2.3 (1.9)	1.4 (3)					
66	2571	17	Deal : 2	3.5 (0.3)	0.7 (0.1)	1 (0.2)	0.02 (0)				
67	308	18	Dank transfer			-26 0 (191 T)					
67	308	48	Bank transfer			2.5 (137.3)					
67	308	48	Physical cash			0.1 (144.4)					
68	2,406	19				. ,	0 (0)		0.2 (0.1)	0 (0.2)	0.01 (0.003)
68	2485	19		3.2 (1.2)	2.1 (0.7)						
69	899	6				27.8 (17.9)					
69	899	9	Famel-	20.0.015.0		-39.2 (16.4)					
69	899	10	remaie	-30.9 (15.1)							
69	899	24	Female	-3.1 (34.3) 37 (19.9)							
69	899	24	Male	-42.2 (40.9)							
70	242	14		-0.5 (0.5)			0.01 (0.02)				-0.04 (0.03)
72	773	24						0.5 (0.1)			
72	773	48						0.7 (0.2)			
72	773	108			20112			0.1 (0.2)			-0.01 (0.01)
72	924	48			5.8 (1.3)	2200					
72	925	48		3.3 (1.2)		2.2 (0.0)					
72	925	108		0.4 (1)		0.6 (1.3)					
72	925	146		(1)		1.8 (1)		0.2 (0.2)			

Appendix Table E.4a

All currency values reported in 2010 USD PPP. Standard errors reported in parentheses. Specific citations associated with each Program ID reported in Table A.1.

Total model Partial is all states and	(1)	(2)	Reported Treat	A ment Effects per 1 (4)	ppendix Table I 00 USD Total T (5)	E.4b ransfer- Lump (6)	Sum UCT Prog	grams (8)	(9)
1 1.17.7 23 0 0.66 (0.67) 0.73 (0.68) 7 37 16 0 0.66 (0.67) 0.73 (0.68) 15 63 16 Male 1.5 0.15 0.15 15 63 16 Male 6.127) 0.16 0.16 16 100 14 6.127) 0.16 0.16 0.14 17 284 3 Female 1.5 (1.5) 0.11 0.16 17 284 3 Male 3.1 (1.1) 0.16 0.14 17 284 4 Male 3.1 (1.1) 0.16 0.14 17 284 4 1.4 (2.1) 0.16 0.16 0.16 17 284 14 1.4 (2.1) 1.13 0.16 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 0.13 <th>Program ID</th> <th>Total Transfer Amount</th> <th>Months Since First Transfer</th> <th>TE Reported by Sub-group Only</th> <th>Stock of Total Assets</th> <th>Stock of Financial Assets</th> <th>Height-for-Age z-Score</th> <th>Weight-for- Age z-Score</th> <th>Stunting (percentage points)</th>	Program ID	Total Transfer Amount	Months Since First Transfer	TE Reported by Sub-group Only	Stock of Total Assets	Stock of Financial Assets	Height-for-Age z-Score	Weight-for- Age z-Score	Stunting (percentage points)
1 1 $Control 000000000000000000000000000000000000$	1	1,717	23				0.66 (0.60)	0.72 (0.68)	
7 77 16 15 62 16 16 60 14 15 62 16 16 60 14 17 284 16 18 60 14 19 284 14 10 30 4 17 284 14 17 284 16 17 284 16 17 284 18 17 284 18 18 98 - 17 284 11 18 98 - 19 284 18 10 284 18 11 284 18 12 30 14 13 14 9 14 143 163 15 93 14 16 143 164 17 384 9 13 156 18 14 164 <	7	29	12				0.66 (0.69)	0.73 (0.68)	
15 600 16 Mat 15 623 16 Nata 15 623 16 Nata 16 300 2 17 244 16 53 (15) 17 244 6 Nata 17 244 11 Mata 17 244 11 Mata 17 244 11 Mata 17 244 11 Mata 17 244 12 Nata 17 244 12 Nata 243 3 12 12 243 3 12 12 243 13 12 12 243 13 12 12 243 12 12 12	7	87	16						
15 682 16 Male 1.43 (16.) 1.43 (16.) 16 253 16 Male 6.127) 16 300 14 1.43 (16.) 1.43 (16.) 17 244 3 Male 3.3 (17.) 17 244 6 Fandle 3.3 (17.) 17 244 6 Fandle 1.3 (16.) 17 244 6 Male 3.3 (17.) 17 244 11 Remaile 1.3 (16.) 17 244 11 Remaile 1.3 (16.) 17 244 12 Remaile 1.3 (16.) 18 793 23 1.44 (16.) 1.3 (16.) 19 744 12 Remaile 1.3 (16.) 10 79 79 79 79 11 79 1.44 (16.) 1.1 (16.) 12 13 14 1.4 1.3 (16.) 13 144 2.5 (16.) 1.4 1.4 13 144 2.5 (16.) 1.1 (16.) <td< td=""><td>15</td><td>682</td><td>16</td><td>Female</td><td></td><td></td><td></td><td></td><td></td></td<>	15	682	16	Female					
13 8.53 10 Nature 14.11(11) 16 300 2 6.12.27 16 300 14 17 244 3 Remain 5.1(55) 17 244 4 Mate 3.3 (21) 17 244 6 Mate 3.3 (21) 17 244 11 Mate 1.1 (11) 17 244 13 Mate 1.1 (11) 18 78 3.4 1.1 (11) 1.3 (11) 19 243 14 4.3 (25) 2.2 (16,5) 11 25 35 1.1 (12) 2.3 (11) 2.3 (11) 23 31 1.1 (12) 2.3 (10) 2.3 (10) 24 35 1.1 (12) 2.3 (10) 3.3 (11) 25 4.35 1.3 (12) 2.3 (10) 3.3 (11) 26	15	682	16	Male					
16 300 24 7 16 300 14 17 244 6 Make 17 244 11 Remake 17 244 12 Make 17 244 13 Remake 17 244 14 Remake 17 244 14 Remake 18 755 24 14 18 755 24 14 18 755 24 14 19 13 10 10 21 34 10 10 22 535 14 223(6.5) 23 13 10 10 24 14 10 10 25 535 14 230(10) 25 131 10 10 <t< td=""><td>15</td><td>825 825</td><td>16 16</td><td>Female Male</td><td></td><td>14.3 (16.1) 6.3 (2.7)</td><td></td><td></td><td></td></t<>	15	825 825	16 16	Female Male		14.3 (16.1) 6.3 (2.7)			
10 0.000 N 10 0.000 N 17 24 3 Make 3.3 (21) 17 24 6 Make 3.3 (21) 17 24 10 Permite 3.3 (21) 17 24 10 10.0 (21) 10.0 (21) 18 12 None 10.0 (21) 10.0 (21) 19 3.4 10 22.5 (6.5) 10.0 (21) 25 3.4 1 22.5 (6.5) 2.5 (7) 27 3.4 2.7 (21) 10.0 (21) 10.0 (21) 38 7 2.5 (6.5) 2.5 (6.5) 10.0 (21) 39 13 2.0 (2.5) 10.0 (21) 10.0 (21) 30 13 2.2 (1.0 (21) 10.0 (21) 10.0 (21) 31 13	16	300	2						
17 244 3 Make 5.8 (1.5.) 17 284 6 Reade 17 284 6 Make 17 284 6 Make 17 284 6 Make 17 284 6 Make 17 284 14 Make 18 790 12 14.3 (0.5.) 21 38 3 - 22 38 1 20.5 (0.5) 23 344 7 90.5 (0.5) 24 38 2 2 25 938 14 20.5 (0.5) 26 35.4 (0.7) 25.0 (0.6) 27 344 1 13.0 (0.7) 38 16 8 13.0 (0.7) 39 156 23 3.3 (2.5) 0.0020 <	16	300 300	8						
17 284 6 $Pouls$ 17 284 6 Make 17 284 1 Make 17 284 11 Formals 17 284 11 Formals 17 284 12 Formals 181 283 3 - 22 35 1 - 23 3 - - 24 98 2 - 25 98 14 - 26 4.356 27 - 27 134 9 - 28 4.356 27 - 29 4.356 27 - 30 16 8 - 31 160 13 0.0 33 516 9 -	17	284	3	Female		5.8 (15.5)			
10 284 6 Make 17 284 9 Fendle 17 284 11 Make 17 284 11 Make 17 284 12 Fendle 17 284 13 Make 17 284 14 Make 17 284 14 Make 18 30 1 14.13 (0.5) 22 35 1 1 23 34 7 90.5 (0.5) 24 98 3 - 25 998 14 22.8 (4.5) 26 998 14 2.8 (4.5) 27 33.4 (1.5) 1 9.1 (1.5) 28 13.1 (1.5) 1 9.1 (1.5) 29 4.55.6 (2.7) 2.5 (0.6) - 31.4 (1.1) 1.3 (0.5) 1 9.1 (1.5) 32 32.1 (1.5) 1.3 (0.5) 1 31.4 (2.1) 1.3 (0.5) 1.3 (0.6) 1 32 32.1 (1.5)	17	284	3	Male		3.3 (21.1)			
17 284 6 Make 17 284 11 Female 17 284 11 Female 17 284 11 Female 17 284 11 Female 17 284 12 Female 18 785 24 144.3 (6.5) 18 785 24 144.3 (6.5) 22 35 3 1 24 98 2 1 25 98.4 2 1 26 1,731 11 5.1 (0.7) 28 1,732 11 5.1 (0.7) 29 4,356 27 2.5 (0.6) 21 121 12 1 22 131 10 10.1 21 121 1 10.1 22 132 12 1 23 131 9.1 10.0 34 25 13 3.1 (0.5) 35 160 13 10.0 36	17	284	6	Male					
11 244 14 Make 17 244 12 Female 17 244 12 Make 17 284 14 Make 18 795 24 14.41 (6.5) 18 795 24 14.41 (6.5) 21 390 12 - 22 38 1 - 23 98 1 - 24 344 9 - 25 98 1 - 26 1,33 1 - 51(0.7) 28 1,33 1 - 51(0.7) 29 4,35 20 - 25(0.6) 30 13 14 - 25(0.6) 31 340 9 - 13(0.5) 33 340 1 - 13(0.5) 33 140 1 - 13(0.5) 33 150 13 9,77.6) - 34 11 - 13(0.5) -	17	284	6	Male					
17 284 11 Make 17 284 12 Formale 18 79 24 14.3 (8.5)	17	284	11	Female					
17 284 14 Funde 18 12 14 143 (05.5) 12 35 1 12 35 1 12 35 1 12 35 1 12 35 1 12 35 1 12 35 1 12 38 2 13 36 2 14 98 2 15 98 1 16 16.0 1 17 384 2 1 18 1.2 1 19 4.366 27 2.5 (0.6) 30 4.364 27 1.8 (12.1) 31 360 18 1.3 (0.5) 32 340 18 1.3 (0.5) 33 316 18 8.3 (100.9) 34 24 1 1.3 (1.5) 35 16 13 3.2 (1.0) 0.01 (0.0) 36 12 2 2.1 (1.0)	17	284	11	Male					
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	17	284 284	12	Female Male					
18 795 24 143 (6.5) 21 30 12 22 33 1 23 39 2 24 39 2 25 988 14 228 (4.5) 27 384 9 9 27 384 9 12 28 4,356 27 25 (0.6) 29 4,356 27 25 (0.6) 29 4,356 27 25 (0.6) 31 460 9 13 (0.5) 33 461 9 13 (0.5) 34 40 9 13 (0.5) 35 244 1 54 (1.1) 36 21 20 1 37 200 1 7 36 21 20 1 37 200 1 90 (0.0) 38 160 23 31 (2.5) 39 152 22 23 (1.1) 0.0 (0.0) 41 225 14 24 (1.1)	17	284	34						
22 1 23 98 1 24 98 2 25 98 14 $223(45)$ 27 334 7 90.5 (0.8) 28 17.3 344 9 27 334 27 106.6 (15.5) 28 1.23 11 5.1 (0.7) 29 43.56 27 2.5 (0.6) 30 1.942 17 1.8.1 (2.1) 31 346 9 1.1 (0.5) 33 346 18	18	795 300	24		144.3 (63.5)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	22	35	1						
3 98 14 $228 (45)$ 27 344 9 9 27 344 9 9 28 1,723 11 5.1 (0.7) 29 43.56 27 $25 (0.6)$ 29 43.56 27 $25 (0.6)$ 30 1,442 17 18 (1.2) 32 32.1 12 $25 (0.6)$ 33 516 9 $3.1 (0.5)$ 33 516 9 $3.1 (0.5)$ 34 24 1 0.002 $0.01 (00)$ 34 24 1 0.002 $0.01 (00)$ 34 24 1 0.002 $0.01 (00)$ 35 56 13 $3.1 (2.5)$ 0.002 $0.01 (00)$ 35 1549 21 $4.6 (1.1)$ $0.01 (0.01)$ $0.000)$ 36 632 13 $0.10 (0.01)$ $0.000)$ 37 1549 21 $4.2 (1.4)$ $0.01 (0.01)$ $0.000)$ 36 152 13 $1.3 (2.5)$	22	35	3						
27 384 9 27 384 9 28 123 11 5.10.7) 29 43.56 27 25.06.0 30 1.942 17 18.1(2.1) 31 340 9 3.31.12 33 480 9 3.31.14 33 480 9 3.31.14 33 480 9 3.31.14 33 516 9 1.3.0.5.1 34 294 1 - 35 16 18 - 36 21 20 - 37 260 13 - 38 140 - - 39 156 23 3.3.16.5 0.00.20 0.01.00.01 39 154 22 2.3.1.1 0.01.00.01 0.01.00.01 40 225 4 - 2.5.1.1 0.01.00.01 0.01.00.01 41 225 16 3.3.14.6.5 - - - 42 2.5.1.1.	24	958	14		22.8 (4.5)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	27	384	7		90.5 (9.8)				
28 4.356 27 $2.5 (0.6)$ 29 4.356 27 $2.5 (0.6)$ 30 1.492 17 $18.1 (2.1)$ 33 3460 9 33 33 480 18 33 33 516 18 $8.3 (100.9)$ 34 294 1 33 36 622 18 37 37 200 13 $9.7 (7.6)$ 39 516 23 $33.3 (2.5)$ $0 (0.02)$ $0.01 (0.01)$ 30 1.52 $0 (0.2)$ $0.01 (0.01)$ $0.01 (0.01)$ $0.01 (0.01)$ 30 1.54 $2.5 (142)$ $4.6 (1.1)$ $0.01 (0.01)$ $0.01 (0.01)$ 40 225 4 $2.2 (14)$ $0.01 (0.01)$ $0.01 (0.01)$ 41 25 4 $2.2 (14)$ $0.01 (0.01)$ $0.01 (0.01)$ 42 25 14 $2.2 (1.1)$ $0.01 (0.01)$ $0.01 (0.01)$ 43 285 24 $-3.3 (1.2)$ $0.6 (3.8)$ $0.01 (0.2)$ $0.01 (0.$	27	384 384	9 27		106.6 (18.5)				
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	28	1,723	11		5.1 (0.7)				
10 1242 17 18.1 (2.1) 33 480 9 33 480 9 33 480 9 33 480 9 33 480 9 34 9 1.3 (0.5) 35 16 18 36 21 20 36 422 19 36 422 19 36 613 9.77(76) 39 1.032 22 2.3 (1.1) 0.01 (0.01) 39 1.032 22 2.3 (1.1) 0.01 (0.01) 39 1.539 21 46 (1.1) 0.01 (0.01) 0.01 (0.01) 30 1.549 21 46 (1.1) 0.01 (0.01) 0.0 (0.01) 40 225 4 2.5 (1.2) 1.1 (1.4) 1.1 (1.4) 43 285 12 2.1 (1.4) 1.2 (1.4) 1.2 (1.4) 44 285 12 1.0 (0.2) 1.3 (1.2) 1.2 (1.4) 1.3 (1.2) 5 1.2.31 12 -4.2	29 29	4,336	20			25(0.6)			
32 32 32 33 460 18 33 516 18 \$\$3(009) 34 294 1 35 516 18 \$\$45(009) 34 294 1 36 422 19 36 422 19 36 632 18 37 200 1 9 37 200 13 9.7(7.6) 39 516 23 3.3(2.5) 0.0(0.0) 4.00(0.0) 40 224 4 2.5(142) 4.6(1.1) 0.01(0.0.0) 0.00(0.0) 40 225 16 3.3(148.5) 4.2(1.1)	30	1,942	17		18.1 (2.1)	2.5 (0.0)			
	32	321	12						
33 516 9 1.3 (0.5) 33 516 18 84.3 (00.9) 34 294 1 84.3 (00.9) 36 422 19 1 36 612 18 1 37 200 1 97 (7.6) 0 (0.2) 0.0 (0.0) 39 1.54 23 3.3 (2.5) 0 (0.01) 0 (0.01) 39 1.549 21 4.6 (1.1) 0.01 (0.01) 0 (0.01) 40 225 4 2.5 (1.4) 0.01 (0.01) 0 (0.01) 41 235 12 182.1 (66.5) 1 (5.1) 43 235 12 .2 (1.1.4) 18 43 235 12 .3 (1.2) 0.9 (0.5) 58 1.135 12 .3 (1.2) 0.9 (0.5) 58 1.135 12 .3 (1.2) 0.9 (0.5) 58 1.135 12 .3 (1.2) 0.9 (0.5) 58 1.205 12 .3 (0.9) 1.5 (1.2.8) 59 379 9 .115 (1.6 (1.4) (33	480	18						
33 316 18 94.3 (100.9) 34 244 1 36 422 19 36 632 18 37 200 13 9.7 (7.6) 39 515 23 3.3 (2.5) 0.00.2) 0.01 (0.01) 39 515 23 3.3 (2.5) 0.00.10.01) 0.00.1) 40 225 4 2.5 (1.4) 0.01 (0.01) 0.0.01) 40 225 16 3.3 (148.5) 143 235 24 40 225 16 3.3 (148.5) 153 143 12 2.1 (1.4) 43 235 24 2.2 (1.4) 0.8 (0.4) 153 143 57 1.34 12 2.1 (1.4) 15 18 174 58 803 12 3.0 (2.5) 18 175 12 0.6 (2.3) 12 1.3 58 1.202 12 3.0 (1.9) 15 12 1.6 (1.0) 16 16 16 16 16 16 16 16 <td>33</td> <td>516</td> <td>9</td> <td></td> <td></td> <td>1.3 (0.5)</td> <td></td> <td></td> <td></td>	33	516	9			1.3 (0.5)			
36 22 19 36 432 18 37 200 13 97 (7.6) 39 516 23 3.3 (2.5) 0 (0.02) 0.01 (0.02) 39 1.69 21 4.6 (1.1) 0.01 (0.01) $-0.01 (0.02)$ 39 1.69 21 4.6 (1.1) 0.01 (0.01) $-0.01 (0.02)$ 39 1.632 22 2.3 (1.1) 0.01 (0.01) $0.00.01$ 40 225 4 2.5 (1.4) 4.4 $-1.6 (1.6, 0.1)$ $0.1 (0.2)$ 43 235 24 - $-1.6 (1.6, 0.1)$ $0.1 (0.2)$ 58 7.04 12 -4.2 (0.1) $0.8 (0.4)$ $-1.5 (1.6, 0.1)$ 58 1.24 2.2 (0.1) $0.1 (0.2)$ $-1.5 (1.6, 0.1)$ $-1.5 (1.2, 0.2)$ 58 1.35 1.2 $-0.6 (3.8)$ $-1.5 (1.2, 0.2)$ $-1.5 (1.6, 0.2)$ 58 1.20 1.2 $-0.6 (3.8)$ $-1.5 (1.2, 0.2)$ $-1.5 (1.6, 0.2)$ 58 1.25 1.2 $-0.6 (3.8)$ $-1.5 (1.2, 0.2)$ $-1.5 (1.2, 0.2)$ <td>33</td> <td>294</td> <td>18</td> <td></td> <td></td> <td>84.3 (100.9)</td> <td></td> <td></td> <td></td>	33	294	18			84.3 (100.9)			
36 642 19 37 200 1 37 200 1 37 200 1 37 200 13 9.7(7.6) 39 1.052 22 2.3(1.1) 0.01(0.01) 0.01(0.01) 39 1.052 22 2.3(1.1) 0.01(0.01) 0(0.01) 40 225 4 2.5(142) 4.6(1.1) 0.01(0.01) 0(0.01) 43 225 16 3.3(148.5)	36	211	20						
27 200 13 9.7(7.6) 37 200 13 9.7(7.6) 39 516 23 3.3(2.5) $0(0.02)$ 0.01(0.07) 39 1.549 21 4.6(1.1) 0.01(0.01) 0.00(1) 40 225 4 2.5(142) 0.01(0.01) 0(0.01) 40 225 16 3.3(148.5) 1.5 1.5 43 285 2 1.2(16.9) 1.6(1.1) 0.1(0.2) 43 285 24 - - - - 57 1.341 12 - 2.1(1.4) -	36	422	19						
37 200 13 9.7(7.6) 39 516 23 $3.3(2.5)$ 0 (0.02) 0.01 (0.02) 39 1.549 21 $4.6(1.1)$ 0.01 (0.01) $0.01(0.01)$ 40 225 4 $2.5(1.4)$ 0.01 (0.01) 0 (0.01) 40 225 16 $3.3(148.5)$ 15.1) 15.1 43 285 24 - - - 43 285 24 - - - 58 7.01 12 - 0.6(2.1) 0.1(0.2) - 58 7.01 12 - 0.6(3.8) - - 58 7.01 12 0.6(3.8) - - - 58 1.035 12 3.3(1.2) 0.9(0.5) - - - 58 1.020 12 .1.7(0.6) 4.3(77.2) - - - 59 379 21 .4.1 (60) - - - - - - - - - - -	37	200	1						
53 1.032 22 2.3 (1.1) 0.01 (0.01) 0.01 (0.01) 39 1.549 21 4.4 (1.1) 0.01 (0.01) 0 (0.01) 40 225 4 2.5 (142) 4.4 (1.1) 0.01 (0.01) 0 (0.01) 40 225 16 3.3 (148.5)	37	200	13		9.7 (7.6)		0 (0.02)	0.01 (0.02)	
39 1.549 21 4.6(.1.) 0.01 (0.01) 0 (0.01) 40 225 4 2.5(.42) 4 40 225 16 3.3 (148.5) 43 285 12 182.1 (6.5) 1 (5.1) 43 285 24 5 1.6.9 1 (5.1) 43 285 24 5 1.6.9 1 (5.1) 43 285 24 5 1.6.9 1 (5.1) 58 761 12 2.1 (1.4) 5 5 58 1.02 12 0.6 (2.1) 0.1 (0.2) 5 58 1.02 12 0.6 (3.3) 5 5 5 59 379 21 2.4 (1.96) 5 5 5 5 5 5 7 7 6 7 7 6 7 7 1.6 1.6 1.6 1.6 1.6 2.3 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6	39	1,032	23		2.3 (1.1)		0.01 (0.01)	-0.01 (0.02)	
40 225 4 2.5 (142) 40 225 16 3.3 (148.5) 43 285 24 43 285 24 57 204 12 -4.2 (9.1) 0.8 (0.4) 57 1.341 12 2.1 (1.4) 2.8 58 761 12 - - 58 8.01 12 0.6 (2.1) 0.1 (0.2) 58 1.035 12 3.3 (1.2) 0.9 (0.5) 58 1.202 12 - - 58 1.202 12 - - 58 1.203 12 1.7 (0.6) 4.3 (77.2) 59 379 9 115.6 (126.8) - 59 379 9 1.2 - 61 263 12 Female - 61 263 12 Male 0.0) 61 263 36 Female - <t< td=""><td>39</td><td>1,549</td><td>21</td><td></td><td>4.6 (1.1)</td><td></td><td>0.01 (0.01)</td><td>0 (0.01)</td><td></td></t<>	39	1,549	21		4.6 (1.1)		0.01 (0.01)	0 (0.01)	
	40	204 225	4		2.5 (142)				
43 285 24 43 285 24 43 285 24 43 285 24 43 285 84 57 204 12 -4.2(9.1) 0.8(0.4) 57 1.341 12 2.1(1.4) 2.1(1.4) 58 801 12 0.6(2.1) 0.1(0.2) 58 1.305 12 3.0(.2) 0.9(0.5) 58 1.202 12 3(0.9) 3.3(1.2) 0.9(0.5) 58 1.205 12 3(0.9) 4.3(77.2) 9 59 379 9 1.56(126.8) 1.10(6.6) 1.113 61 263 12 Female 0(0) 61 263 12 Female 61 263 12 Male 0.2(2.41) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 61 263 66 Female 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2.6) 1.10(2	40	225	16		3.3 (148.5)				
43 285 84 57 204 12 $4.2(0,1)$ 0.8 (0.4) 57 1.241 12 2.1 (1.4) 58 761 12 $0.6 (2.1)$ 0.1 (0.2) 58 983 12 $0.6 (2.1)$ 0.1 (0.2) 58 1.035 12 $3.3 (1.2)$ 0.9 (0.5) 58 1.202 12 $0.6 (3.8)$ 58 1.275 12 $0.6 (3.8)$ 58 1.890 12 $1.7 (0.6)$ $4.3 (77.2)$ 59 379 9 115.6 (126.8) $3.0.9$ 61 263 12 Female 0.00 61 263 12 Female 0.00 61 263 24 Female 0.09 61 263 64 Male $0.2 (2.41)$ 61 263 64 Male $0.2 (2.41)$ 61 263 66 Female 0.09 62 529 16 $10.2 (8.6)$ 0.9 64 67 <	43	285	12		182.1 (66.9)	1 (5.1)			
57 204 12 $4.2 (9.1)$ $0.8 (0.4)$ 58 761 12 $2.1 (1.4)$ 58 761 12 $0.1 (0.2)$ 58 801 12 $0.6 (2.1)$ $0.9 (0.5)$ 58 1.035 12 $3.3 (1.2)$ $0.9 (0.5)$ 58 1.265 12 $3 (0.9)$ $6.6 (3.8)$ 58 1.280 12 $1.7 (0.6)$ $4.3 (77.2)$ 59 379 9 $115.6 (126.8)$ $0 (0)$ 61 263 12 Female $6.6 (3.8)$ 61 263 12 Female $0 (0)$ 61 263 12 Male $0 (0)$ 61 263 24 Female $6.6 (3.9)$ 61 263 14 Male $0 (0.9)$ 61 263 14 Male $0 (0.9)$ 61 263 66 Male $0 (0.9)$ 62 59 10.2 (8.6) $0 (0.9)$ 64 67 7 $2.9 (0.8)$	43	285	84						
58 761 12 58 801 12 $0.6(2.1)$ 58 983 12 58 1.035 12 $3.3(1.2)$ $0.9(0.5)$ 58 1.202 12 $0.6(3.8)$ 58 1.205 12 $0.6(3.8)$ 58 1.800 12 $1.7(0.6)$ $4.3(77.2)$ 59 379 9 115.6(126.8) 59 379 21 24.1(96) 60 1.31 12 $-4.1(63)$ 61 263 12 Kana 61 263 24 Female 61 263 24 Female 61 263 36 Male $0(0.9)$ 61 263 36 Male $0(2.9)$ 62 529 16 $10.2(8.6)$ $10.2(8.6)$ 64 667 27 $2.9(0.8)$ 5 65 293 5 $2.3(0.9)$ 6 66 2.571 17 115.1(12.6) $1.8(0.5)$	57	204	12		-4.2 (9.1)	0.8 (0.4)			
58 901 12 $0.6(2.1)$ $0.1(0.2)$ 58 903 12 $3.3(1.2)$ $0.9(0.5)$ 58 1.202 12 $3.3(1.2)$ $0.9(0.5)$ 58 1.205 12 $3(0.9)$ 58 1.265 12 $0.6(3.8)$ 59 379 9 $1156(126.8)$ 59 379 9 $1416(126.8)$ 61 263 12 Female 61 263 12 Female 61 263 24 Female 61 263 24 Female 61 263 66 Female 61 263 66 Male $0(0.9)$ 61 263 66 Male $0(0.9)$ 62 529 16 $10.2(8.6)$ $0.2(9.6)$ 64 667 27 $6(4.7)$ $2.9(0.8)$ 65 293 5 $2.3(0.9)$ 66 66 2.571 17 115.1(12.6) $1.38(0.5)$ 67	58	761	12		2.1 (1.4)				
38 983 12 58 1.035 12 $3.3(1.2)$ 0.9 (0.5) 58 1.202 12 $3(0.9)$ 58 1.795 12 $0.6(3.8)$ 58 1.890 12 $1.7(0.6)$ $4.3(77.2)$ 59 379 9 1156(126.8) 50 1313 12 $-4.1(6.3)$ 61 263 12 Female 61 263 12 Male $0(0)$ 61 263 24 Female 61 61 263 24 Female 61 61 263 66 Female 61 61 263 66 Male $0(0.9)$ 61 263 66 Male $0(0.9)$ 62 529 16 $10.2(8.6)$ $3(0.9)$ 64 667 27 $6(4.7)$ $2.9(0.8)$ 65 293 5 $2.3(0.9)$ 66 66 2.571 17 115.1(12.6) $1.8(0.5)$	58	801	12		0.6 (2.1)	0.1 (0.2)			
58 1,205 12 $3 (0.9)$ 58 1,795 12 $0.6 (3.8)$ 58 1,890 12 $1.7 (0.6)$ $4.3 (77.2)$ 59 379 9 $115.6 (126.8)$ 59 379 21 $24.1 (96)$ 60 1.313 12 $-4.1 (6.3)$ 61 263 12 Male $0 (0)$ 61 263 24 Male $2.2 (4.1)$ 61 263 36 Female 61 61 263 36 Female 61 61 263 36 Female 61 61 263 36 Male 0.90 62 529 16 $10.2 (8.6)$ 64 64 667 27 $2.9 (0.8)$ 5 65 279 5 $2.3 (0.9)$ 66 66 2.571 17 $115.1 (12.6)$ $1.8 (0.5)$ 67 308 18 Bank transfer $234 (203.7)$ 67 308 48	58	1,035	12		3.3 (1.2)	0.9 (0.5)			
38 1,265 12 3 (09) 58 1,890 12 1,7 (0.6) 4.3 (77.2) 59 379 9 115 (12.6.8) 59 379 21 24.1 (96) 60 1,313 12 -4.1 (6.3) 61 263 12 Female 61 263 24 Female 61 263 24 Male 0 (0) 61 263 36 Female 6 61 263 36 Male 0 (0.9) 61 263 36 Female 6 61 263 66 Male 0 (0.9) 62 529 16 10.2 (8.6) 64 667 27 2.9 (1.) 64 708 27 6 (4.7) 65 293 5 2.3 (0.9) 66 2.571 17 115.1 (12.6) 1.8 (0.5) 67 308 18 Physical cash 3.6 (247.2) 68 2.406 19 138.6 (138.	58	1,202	12						
58 1.890 12 $1.7(0.6)$ $4.3(77.2)$ 59 379 9 $1156(126.8)$ 50 379 21 $24.1(96)$ 60 1.313 12 $-4.1(6.3)$ 61 263 12 Male $0(0)$ 61 263 24 Female 6 61 263 24 Male $2.2(4.1)$ 61 263 36 Female 6 61 263 36 Male $0(0.9)$ 61 263 36 Male $0(2.9)$ 62 529 16 $10.2(8.6)$ $0.2(9.6)$ 64 667 27 $2.9(1)$ 64 65 279 5 $2.3(0.9)$ 66 66 2.571 17 $115.1(12.6)$ $1.8(0.5)$ 67 308 18 Bank transfer $234(203.7)$ 67 308 48 Bank transfer $134.4(23.8)$ $3(1.3)$ 67 308 48 Bank transfer $134.6(23.6)$ <td>58</td> <td>1,265</td> <td>12</td> <td></td> <td>3 (0.9)</td> <td>0.6 (3.8)</td> <td></td> <td></td> <td></td>	58	1,265	12		3 (0.9)	0.6 (3.8)			
59 379 9 115 6 (12.8.) 59 379 21 $24.1 (96)$ 60 1.313 12 $-4.1 (6.3)$ 61 263 12 Male 0 (0) 61 263 24 Female 6 61 263 24 Male $2.2 (4.1)$ 61 263 36 Female 6 61 263 36 Male $0 (0.9)$ 61 263 36 Female 6 61 263 66 Nale $3 (0.9)$ 62 529 16 $10.2 (8.6)$ $2.9 (1)$ 64 708 27 $6 (4.7)$ $2.9 (1)$ 65 279 5 $2.3 (0.9)$ $2.6 (2.5)$ 66 2.571 17 115.1 (12.6) $1.8 (0.5)$ 67 308 18 <td>58</td> <td>1,890</td> <td>12</td> <td></td> <td>1.7 (0.6)</td> <td>4.3 (77.2)</td> <td></td> <td></td> <td></td>	58	1,890	12		1.7 (0.6)	4.3 (77.2)			
60 1,313 12 4.1 (6.3) 61 263 12 Fenale 61 263 12 Male 0 (0) 61 263 24 Fenale 61 61 263 24 Fenale 61 61 263 36 Male 0 (0.9) 61 263 36 Male 0 (0.9) 61 263 36 Fenale 61 61 263 66 Fenale 61 61 263 66 Male 3 (0.9) 62 529 16 10.2 (8.6) 64 64 667 27 2.9 (0.8) 65 65 279 5 2.3 (0.9) 66 66 2.571 17 11.51 (12.6) 1.8 (0.5) 67 308 18 Bank transfer 234 (203.7) 67 308 48 Physical cash 65 (247.2) 68 2.406 19 6 6 69 899 9	59 59	379	9 21		24.1 (96)				
61 263 12 Fenale 61 263 24 Fenale 61 263 24 Male $0(0)$ 61 263 24 Male $2(2(4))$ 61 263 36 Male $0(0.9)$ 61 263 36 Male $0(0.9)$ 61 263 36 Fenale - 61 263 66 Fenale - 61 263 66 Fenale - 61 263 66 Male $3(0.9)$ 62 529 16 $10.2 (8.6)$ 64 667 27 $2.9 (0.8)$ 65 279 5 $2.9 (0.8)$ 66 2,571 17 11.51 (12.6) $1.8 (0.5)$ 67 308 18 Bank transfer 234 (203.7) 67 308 48 Baysical cash 365 (247.2) 68 2,406 19 - - 68 2,406 19 - <	60	1,313	12		-4.1 (6.3)				
61 2.03 1.2 max $0(0)$ 61 2.63 2.4 Female 61 2.63 3.6 Female 61 2.63 3.6 Female 61 2.63 3.6 Male $0(0.9)$ 61 2.63 3.6 Male $0(0.9)$ 61 2.63 6.6 Female	61	263	12	Female		0.00			
61 263 24 Male $22(4.1)$ 61 263 36 Female $0(0.9)$ 61 223 36 Male $0(0.9)$ 61 223 36 Male $0(0.9)$ 61 223 66 Female $3(0.9)$ 62 529 16 $10.2(8.6)$ 467 64 667 27 $2.9(1)$ 647 65 279 5 $2.9(0.8)$ 55 65 293 5 $2.3(0.9)$ 66 67 308 18 Bank transfer $234(23.7)$ 67 308 18 Bank transfer $134(133.4)$ 67 308 48 Physical cash $55(247.2)$ 68 2.406 19 $138.6(138.6)$ <td>61</td> <td>263</td> <td>24</td> <td>Female</td> <td></td> <td>0(0)</td> <td></td> <td></td> <td></td>	61	263	24	Female		0(0)			
61 223 36 Male $0(0.9)$ 61 223 66 Fenale $0(0.9)$ 61 223 66 Fenale $0(0.9)$ 62 529 16 $10.2 (8.6)$ 64 667 27 $2.9 (1)$ 64 77 $2.9 (1)$ 65 279 5 $2.9 (0.8)$ 65 293 5 $2.3 (0.9)$ 66 2.571 17 $115.1 (12.6)$ $1.8 (0.5)$ 67 308 18 Bank transfer $234 (203.7)$ 67 308 18 Bank transfer $134 (133.4)$ 67 308 48 Physical cash $-13.4 (133.4)$ 67 308 48 Bank transfer $134.6 (138.6)$ 69 899 96 66 69 899 96 69 899 96 66 69 899 910 Male $451 (260.2)$ 69 899 24 F	61	263	24	Male		2.2 (4.1)			
61 263 66 Female 61 263 66 Male $3 (0.9)$ 62 529 16 $10.2 (8.6)$ 64 667 27 $2.9 (1)$ 64 708 27 $6 (4.7)$ 65 293 5 $2.9 (0.8)$ 65 293 5 $2.3 (0.9)$ 66 2.571 17 $115.1 (12.6)$ $1.8 (0.5)$ 67 308 18 Bank transfer $224 (203.7)$ 67 308 18 Bank transfer $1234 (233.3)$ 67 308 48 Physical cash $-13.4 (133.4)$ 67 308 48 Bank transfer $134.6 (238.3)$ $3 (1.3)$ 67 308 48 Physical cash $3 (5.5 (247.2)$ 68 2.406 19 68 2.406 19 $36.5 (247.2)$ 68 2.999 6 69 899 9 6 69 899 10 Male <t< td=""><td>61</td><td>263</td><td>36</td><td>Male</td><td></td><td>0 (0.9)</td><td></td><td></td><td></td></t<>	61	263	36	Male		0 (0.9)			
62 529 16 $102(8.6)$ 64 667 27 $2.9(1)$ 64 708 27 $6(4.7)$ 65 279 5 $2.9(0.8)$ 65 293 5 $2.9(0.8)$ 66 $2,571$ 17 $115.1(12.6)$ $1.8(0.5)$ 67 308 18 Bank transfer $224(203.7)$ 67 308 18 Bank transfer $1234(203.7)$ 67 308 18 Bank transfer $1234(203.7)$ 67 308 18 Bank transfer $1234(203.7)$ 67 308 48 Bank transfer $134(133.4)$ 67 308 48 Bank transfer $1346(138.6)$ 69 899 6 6 6 69 899 9 6 6 69 899 24 Female $-1569(113.3)$ 69 899 24 Female $-1569(113.3)$ 69 899 <td>61</td> <td>263</td> <td>66</td> <td>Female</td> <td></td> <td>2 (0.0)</td> <td></td> <td></td> <td></td>	61	263	66	Female		2 (0.0)			
64 667 27 $2.9(1)$ 64 708 27 $6(4.7)$ 65 279 5 $2.9(0.8)$ 65 293 5 $2.3(0.9)$ 66 2.571 17 $115.1(12.6)$ $1.8(0.5)$ 67 308 18 Bank transfer $234(203.7)$ 67 308 18 Physical cash $-13.4(133.4)$ 67 308 48 Physical cash $36.5(247.2)$ 68 2.406 19 68 2.485 19 $138.6(138.6)$ 69 899 6 66 69 899 6 69 899 10 Male $321.3(414.7)$ 69 899 24 Female $-156.9(113.3)$ 69 899 24 Female $-156.9(113.3)$ 69 899 24 $51.(2.7)$ 72 773 24 $51.(2.7)$ 773 48 72.773 73.68 $72.925.24$ $57.4(11.9)$ $72.925.24$	61	263 529	16	wiate	10.2 (8.6)	3 (0.9)			
64 708 27 $6(4.7)$ 65 279 5 $2.9(0.8)$ 66 2.571 17 $115.1(12.6)$ $1.8(0.5)$ 67 308 18 Bank transfer $234(203.7)$ 67 308 18 Bank transfer $234(203.7)$ 67 308 18 Physical cash $-13.4(133.4)$ 67 308 48 Physical cash $36.5(247.2)$ 68 2.406 19 6 69 899 6 6 69 899 6 6 69 899 9 6 69 899 10 Female $82.13(414.7)$ 69 899 10 Male $321.3(414.7)$ 69 899 24 Female $-156.9(113.3)$ 69 899 24 Kemale $5.1(2.7)$ 72 773 24 $5.1(2.7)$ 72 773 48 72 2773 72	64	667	27			2.9 (1)			
65 293 5 2.3 (0.9) 66 2.571 17 115.1 (12.6) 1.8 (0.5) 67 308 18 Bank transfer 234 (203.7) 67 308 18 Physical cash 1.3 (13.4) 67 308 48 Physical cash 1.3 (13.3.4) 67 308 48 Physical cash 3.6.5 (247.2) 68 2.406 19 6 69 899 6 6 69 899 9 6 69 899 10 Female 82.1 (123.8) 69 899 10 Male 321.3 (414.7) 69 899 10 Male 321.3 (414.7) 69 899 24 Female -156.9 (113.3) 69 899 24 Male 4.51 (260.2) 70 242 14 5.1 (2.7) 72 773 24 27 73 108 2925 24 57.4 (11.9) 72 925 24 34 (9.5	64 65	708 279	27		6 (4.7)	2.9 (0.8)			
66 2.571 17 115.1 (12.6) 1.8 (0.5) 67 308 18 Bank transfer 234 (203.7) 67 308 18 Physical cash 1.34 (133.4) 67 308 48 Bank transfer 184.8 (238.3) 3 (1.3) 67 308 48 Physical cash 3.6.5 (247.2) 68 68 2.485 19 138.6 (138.6) 69 69 899 6 69 69 69 899 9 6 69 69 899 10 Male 321.3 (414.7) 69 899 10 Male 321.3 (414.7) 69 899 24 Female -156.9 (113.3) 69 899 24 Male 451 (260.2) 70 242 14 5.1 (2.7) 72 773 24 5.1 (2.7) 72 925 24 57.4 (11.9) 72 925 24 34 (9.5) 72 925 106 <td< td=""><td>65</td><td>293</td><td>5</td><td></td><td>2.3 (0.9)</td><td> (0.0)</td><td></td><td></td><td></td></td<>	65	293	5		2.3 (0.9)	(0.0)			
67 308 10 bank unitset 2.94 (49.3.7) 67 308 18 Physical cash 1.34 (13.3.4) 67 308 48 Bank transfer 184.8 (238.3) 3 (1.3) 67 308 48 Bank transfer 184.8 (238.3) 3 (1.3) 67 308 48 Physical cash 36.5 (247.2) 68 2.406 19 68 2.485 19 138.6 (138.6) 69 899 6 69 899 6 69 899 10 Male 69 899 10 Male 69 899 10 Male 70 242 14 5.1 (2.7) 72 773 24 72 773 24 72 224 48 72 925 24 57.4 (11.9) 72 925 108 203.4 (170.3) 72 925 146 9.1 (102.3)	66	2,571	17	Bank transfer	115.1 (12.6)	1.8 (0.5)			
67 308 48 Bank transfer $184.8 (238.3)$ $3 (1.3)$ 67 308 48 Physical cash $36.5 (247.2)$ 68 2.406 19 68 2.485 19 $138.6 (138.6)$ 69 899 6 69 899 6 69 899 10 69 899 10 69 899 10 69 899 10 69 899 24 70 242 14 7173 24 72 773 24 72 773 24 72 273 48 72 925 24 $57.4 (11.9)$ 72 925 146 $91.(102.3)$	67	308	18	Physical cash	-13.4 (133.4)				
or 308 48 Physical cash 56.5 (247.2) 68 2,406 19	67	308	48	Bank transfer	184.8 (238.3)	3 (1.3)			
	67 68	308 2,406	48	r'nysical cash	30.5 (247.2)				
	68	2,485	19		138.6 (138.6)				
69 899 10 Female $82.1 (123.8)$ 69 899 10 Male $321.3 (414.7)$ 69 899 24 Female $-156.9 (113.3)$ 69 899 24 Female $-451.2 (260.2)$ 70 242 14 $5.1 (2.7)$ 72 773 24 773 72 773 108 72 925 24 $57.4 (11.9)$ 72 925 48 $34 (9.5)$ 72 925 146 $91 (102.2)$	69 69	899 899	6						
69 899 10 Male 321.3 (41.47) 69 899 24 Female -156.9 (113.3) 69 899 24 Male -451.1 (260.2) 70 242 14 5.1 (2.7) 72 773 24 24 72 773 108 72 924 48 72 925 24 57.4 (11.9) 72 925 48 34 (9.5) 72 925 146 91 (102.3)	69	899	10	Female	82.1 (123.8)				
69 69 24 Male -1.09 (11.3.) 69 89 24 Male -45.1 (260.2) 70 242 14 5.1 (2.7) 72 773 24 5.1 (2.7) 72 773 108 72 72 924 48 57.4 (11.9) 72 925 24 57.4 (11.9) 72 925 148 34 (9.5) 72 925 146 9.1 (102.2)	69	899	10	Male	321.3 (414.7)				
70 242 14 5.1 (2.7) 72 773 24 72 773 48 72 773 108 72 924 48 72 925 24 72 925 48 72 925 48 72 925 48 72 925 108 72 925 108 91 102	69	899	24	Male	-45.1 (260.2)				
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	70	242	14		5.1 (2.7)				
72 773 108 72 924 48 72 925 24 57.4 (11.9) 72 925 48 34 (9.5) 72 925 108 203.4 (170.3) 72 925 146 91 (102.2)	72	773	24 48						
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	72	773	108						
72 925 48 34 (9.5) 72 925 108 2034 (170.3) 72 925 146 9 (102.3)	72 72	924 925	48		57.4 (11.9)				
72 925 108 203.4 (170.3) 72 925 146 91 (102.3)	72	925	48		34 (9.5)				
	72 72	925 925	108			203.4 (170.3)			

All currency values reported in 2010 USD PPP. Standard errors reported in parentheses. Specific citations associated with each Program ID reported in Table A.1. No lump sum programs in our sample report treatment effects on stunting.